Math 1100 — Calculus, Quiz
$$#2A - 2009-09-28$$

(40)

(30)

(30)

1. Let $f(x) := \frac{\sqrt{1+x}-1}{x}$. Use the 'limit laws' from section 2.3 in the book to compute $\lim_{x \to 0} f(x)$.

Solution: For all $x \neq 0$, we have

$$\frac{\sqrt{1+x}-1}{x} = \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \frac{(\sqrt{1+x})^2 - \sqrt{1+x} + \sqrt{1+x}-1}{x(\sqrt{1+x}+1)}$$
$$= \frac{1+x-1}{x(\sqrt{1+x}+1)} = \frac{x}{x(\sqrt{1+x}+1)} = \frac{1}{\sqrt{1+x}+1}.$$
Thus, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+0}+1} = \boxed{\frac{1}{2}}.$

2. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the function portrayed in the picture. Based on this picture, what are $\lim_{x \nearrow 0} g(x) \text{ and } \lim_{x \searrow 0} g(x)?$

Solution:
$$\lim_{x \nearrow 0} g(x) = \boxed{-1.}$$
, while $\lim_{x \searrow 0} g(x) = \boxed{2.}$

3. Combine your answers from #1 and #2.

(a) What is
$$\lim_{x \neq 0} (f(x) + g(x))$$
?

(a) what is $\lim_{x \neq 0} (f(x) + g(x))$ (b) What is $\lim_{x \searrow 0} f(x) \cdot g(x)$?

Solution: (a)
$$\lim_{x \neq 0} (f(x) + g(x)) = \lim_{x \neq 0} f(x) + \lim_{x \neq 0} g(x) = \frac{1}{2} + -1 = \left[-\frac{1}{2} \right]$$

(b) $\lim_{x \searrow 0} f(x) \cdot g(x) = \left(\lim_{x \searrow 0} f(x) \right) \cdot \left(\lim_{x \searrow 0} g(x) \right) = \frac{1}{2} \cdot (2) = \boxed{1}$

1