Math 1100 — Calculus, Quiz $\#1\mathrm{A}$ — 2009-09-21

Define the functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$ by f(x) = 3x and g(x) = x + 1 for all $x \in \mathbb{R}$.

1. Find a formula for each of the following functions:

(10)	(a) $f \circ f$.	
	Solution: $f \circ f(x) = 3 \cdot 3 \cdot x = 9x$, for all $x \in \mathbb{R}$.	
(10)	(b) $f \circ f \circ f$.	
	Solution: $f \circ f \circ f(x) = 3 \cdot 3 \cdot 3 \cdot x = \boxed{27 x}$, for all $x \in \mathbb{R}$.	
(10)	(c) $g \circ g$.	
	Solution: $g \circ g(x) = x + 1 + 1 = x + 2$, for all $x \in \mathbb{R}$.	
(10)	(d) $g \circ g \circ g$.	
	Solution: $g \circ g \circ g(x) = x + 1 + 1 + 1 = x + 3$, for all $x \in \mathbb{R}$.	
(10)	(e) $f \circ g$.	
	Solution: $f \circ g(x) = f[g(x)] = f(x+1) = 3(x+1) = 3x+3$, for all $x \in \mathbb{R}$.	
(10)	(f) $g \circ f$.	
	Solution: $g \circ f(x) = g[f(x)] = g(3x) = \boxed{3x+1}$ for all $x \in \mathbb{R}$.	
2.	Define the function $f: (-\infty, 9] \longrightarrow \mathbb{R}_+$ by $f(x) = \sqrt{27 - 3x}$ for all $x \in (-\infty, 9]$.	
(10)	(a) Why is $f(x)$ not well-defined (i.e. not a real number) if $x > 9$?	
	Solution: If $x > 9$, then $3x > 27$, so $27 - 3x < 0$, so $\sqrt{27 - 3x}$ is not well-defined (as	a real
	number).	
(20)	(b) Find a formula for the function f^{-1} .	
	Solution: For any $x \in (-\infty, 9]$ and $y \in \mathbb{R}_+$, we have:	

$$\begin{pmatrix} y = f(x) \end{pmatrix} \iff \begin{pmatrix} y = \sqrt{27 - 3x} \end{pmatrix} \iff \begin{pmatrix} y^2 = 27 - 3x \end{pmatrix} \iff \begin{pmatrix} y^2/3 = 9 - x \end{pmatrix}$$
$$\iff \begin{pmatrix} x = 9 - y^2/3 \end{pmatrix} \iff \begin{pmatrix} f^{-1}(y) = 9 - y^2/3 \end{pmatrix}$$

We conclude that
$$f^{-1}(y) = 9 - y^2/3$$
 for all $y \in \mathbb{R}_+$.

(10) (c) What is the range of the function f^{-1} ? Solution: The range of f^{-1} is the domain of f —that is, the interval $(-\infty, 9]$. \Box