## Math 1100 - Calculus, Quiz \#1A - 2009-09-21

Define the functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x)=3 x$ and $g(x)=x+1$ for all $x \in \mathbb{R}$.

1. Find a formula for each of the following functions:
(a) $f \circ f$.

Solution: $f \circ f(x)=3 \cdot 3 \cdot x=9 x$, for all $x \in \mathbb{R}$.
(b) $f \circ f \circ f$.

Solution: $f \circ f \circ f(x)=3 \cdot 3 \cdot 3 \cdot x=27 x$, for all $x \in \mathbb{R}$.
(c) $g \circ g$.

Solution: $g \circ g(x)=x+1+1=x+2$, for all $x \in \mathbb{R}$.
(d) $g \circ g \circ g$.

Solution: $g \circ g \circ g(x)=x+1+1+1=x+3$, for all $x \in \mathbb{R}$.
(e) $f \circ g$.

Solution: $f \circ g(x)=f[g(x)]=f(x+1)=3(x+1)=3 x+3$, for all $x \in \mathbb{R}$.
(f) $g \circ f$.

Solution: $g \circ f(x)=g[f(x)]=g(3 x)=3 x+1$, for all $x \in \mathbb{R}$.
2. Define the function $f:(-\infty, 9] \longrightarrow \mathbb{R}_{+}$by $f(x)=\sqrt{27-3 x}$ for all $x \in(-\infty, 9]$.
(a) Why is $f(x)$ not well-defined (i.e. not a real number) if $x>9$ ?

Solution: If $x>9$, then $3 x>27$, so $27-3 x<0$, so $\sqrt{27-3 x}$ is not well-defined (as a real number).
(b) Find a formula for the function $f^{-1}$.

Solution: For any $x \in(-\infty, 9]$ and $y \in \mathbb{R}_{+}$, we have:

$$
\begin{aligned}
(y=f(x)) & \Longleftrightarrow(y=\sqrt{27-3 x}) \Longleftrightarrow\left(y^{2}=27-3 x\right) \Longleftrightarrow\left(y^{2} / 3=9-x\right) \\
& \Longleftrightarrow\left(x=9-y^{2} / 3\right) \Longleftrightarrow\left(f^{-1}(y)=9-y^{2} / 3\right)
\end{aligned}
$$

We conclude that $f^{-1}(y)=9-y^{2} / 3$ for all $y \in \mathbb{R}_{+}$.
(c) What is the range of the function $f^{-1}$ ?

Solution: The range of $f^{-1}$ is the domain of $f$-that is, the interval $(-\infty, 9]$.

