Math 1100 - Calculus, Quiz \#18B - 2010-04-8

Are the following series absolutely convergent, conditionally convergent, or divergent? Justify your answer in each case.

1. $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$.

Solution: This series is absolutely convergent. The Integral Test says that the series converges if and only if the improper integral $\int_{2}^{\infty} \frac{1}{x(\ln (x))^{2}} \mathrm{~d} x$ converges. But

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln (x))^{2}} \mathrm{~d} x & \underset{(*)}{ } \int_{\ln (2)}^{\infty} \frac{1}{u^{2}} \mathrm{~d} u=\left.\lim _{N \rightarrow \infty} \frac{-1}{u}\right|_{u=\ln (2)} ^{u=N} \\
& =\lim _{N \rightarrow \infty}\left(\frac{1}{\ln (2)}-\frac{1}{N}\right)=\frac{1}{\ln (2)}<\infty .
\end{aligned}
$$

Thus, the integral is convergent, and thus, so is the series. Here $(*)$ is the change of variables $u:=\ln (x)$ so that $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
2. $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$.

Solution: This series is absolutely convergent. To see this, we use the Ratio Test. Let $a_{n}:=\frac{n!}{e^{n^{2}}}$. Then

$$
\begin{aligned}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\frac{(n+1)!/ e^{(n+1)^{2}}}{n!/ e^{n^{2}}}=\frac{(n+1)!}{n!} \cdot \frac{e^{n^{2}}}{e^{\left(n^{2}+2 n+1\right)}} \\
& =(n+1) \cdot e^{n^{2}-\left(n^{2}+2 n+1\right)}=(n+1) \cdot e^{-2 n-1} .
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{(n+1)}{e^{2 n+1}} \overline{(*)} \lim _{n \rightarrow \infty} \frac{1}{2 e^{2 n+1}}=0<1$,
where $(*)$ is by l'Hospital's rule. Thus, the Ratio Test says the series converges absolutely.
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n)}$.

Solution: This series is conditionally convergent but not absolutely convergent. To see this, first observe that the sequence $\left\{\frac{1}{\ln (n)}\right\}_{n=1}^{\infty}$ is decreasing (because the function $\ln (x)$ is increasing). Also

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln (n)}=0
$$

Thus, the Alternating Series Test says that the series converges. However, the series does not converge absolutely. To see this, we use the Comparison Test to compare the series $\sum_{n=1}^{\infty} \frac{1}{\ln (n)}$ to the divergent series $\sum_{n=1}^{\infty} \frac{1}{n}$. For all $n \geq 2$, we have $\ln (n)<n$; thus, $\frac{1}{\ln (n)}>\frac{1}{n}$. Thus, as $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we conclude that $\sum_{n=1}^{\infty} \frac{1}{\ln (n)}$ also diverges.
4. What is the radius of convergence of the power series $f(x):=\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{3^{n}}$?
(Hint. Use the Ratio Test to solve for the largest $|x|$ such that the series is absolutely convergent.)
Solution: The radius of convergence is $R=3$. To see this, we use the Ratio Test. Let $x \in \mathbb{R}$ and define $a_{n}:=\frac{n^{2} x^{n}}{3^{n}}$. Then

$$
\begin{aligned}
\begin{aligned}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\frac{(n+1)^{2} x^{n+1} / 3^{n+1}}{n^{2} x^{n} / 3^{n}}=\frac{(n+1)^{2} x}{n^{2}} \cdot \frac{3^{n}}{3^{n+1}} \\
& =\frac{(n+1)^{2} x}{3 n^{2}} . \\
\text { Thus, } \quad \lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{2} x}{3 n^{2}} .=\frac{x}{3} \cdot \lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2}=\frac{x}{3} .
\end{aligned} .=\frac{x}{n} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& (|x|<3) \Longleftrightarrow\left(\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1\right) \Longrightarrow(\text { Series converges absolutely }), \quad \text { and } \\
& (|x|>3) \Longleftrightarrow\left(\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>1\right) \Longrightarrow(\text { Series diverges })
\end{aligned}
$$

Thus, the radius of convergence is $R=3$.

