
Math 1100 — Calculus, Quiz #18A — 2010-04-05

Are the following series absolutely convergent, conditionally convergent, or divergent? Jus-
tify your answer in each case.
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Solution: This series is divergent. The Integral Test says that the series converges if and only if the

improper integral
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= ∞.

Thus, the integral is divergent, and thus, so is the series. Here (∗) is the change of variables

u := ln(x) so that du = 1
x dx. 2
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Solution: This series is absolutely convergent . To see this, we use the Ratio Test. Let an :=
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Thus, lim
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Thus, the Ratio Test says the series is absolutely convergent. 2
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Solution: This series is absolutely convergent . To see this, observe that | sin(n5)| ≤ 1 for all n ∈ N.

Thus,
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. But the series
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converges (it is a p-series with p = 3/2 > 1).

Thus, the Comparison Test tells us that the series
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Solution: This series is conditionally convergent but not absolutely convergent. To see this, first

observe that the sequence

{

1√
n2 + 5

}

∞

n=1

is decreasing (because the function f(x) =
√

x2 + 5 is

increasing). Also,

lim
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= 0.

Thus, the Alternating Series Test says that the series converges. However, the series does not con-

verge absolutely. To see this, we use the Limit Comparison Test to compare the series
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to the divergent series
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Thus, as
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diverges, we conclude that
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also diverges. 2
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