Math 1100 - Calculus, Quiz \#18A - 2010-04-05

Are the following series absolutely convergent, conditionally convergent, or divergent? Justify your answer in each case.

1. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln (n)}}$.

Solution: This series is divergent. The Integral Test says that the series converges if and only if the improper integral $\int_{2}^{\infty} \frac{1}{x \sqrt{\ln (x)}} \mathrm{d} x$ converges. But

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln (x)}} \mathrm{d} x & \overline{(*)} \int_{\ln (2)}^{\infty} \frac{1}{\sqrt{u}} \mathrm{~d} u=\left.\lim _{N \rightarrow \infty} 2 u^{1 / 2}\right|_{u=\ln (2)} ^{u=N} \\
& =\lim _{N \rightarrow \infty}(2 \sqrt{N}-2 \sqrt{\ln (2)})=\infty
\end{aligned}
$$

Thus, the integral is divergent, and thus, so is the series. Here $(*)$ is the change of variables $u:=\ln (x)$ so that $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n} n^{2}}{n!}$.

Solution: This series is absolutely convergent. To see this, we use the Ratio Test. Let $a_{n}:=$ $\frac{(-1)^{n} 3^{n} n^{2}}{n!}$. Then

$$
\begin{aligned}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\frac{3^{n+1}(n+1)^{2} /(n+1)!}{3^{n} n^{2} / n!}=\frac{3(n+1)^{2} \cdot n!}{n^{2} \cdot(n+1)!} \\
& =\frac{3(n+1)^{2}}{n^{2} \cdot(n+1)}=\frac{3(n+1)}{n^{2}} . \\
\text { Thus, } \quad \lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{3(n+1)}{n^{2}}=0<1 .
\end{aligned}
$$

Thus, the Ratio Test says the series is absolutely convergent.
3. $\sum_{n=1}^{\infty} \frac{\sin \left(n^{5}\right)}{n^{3 / 2}}$.

Solution: This series is absolutely convergent. To see this, observe that $\left|\sin \left(n^{5}\right)\right| \leq 1$ for all $n \in \mathbb{N}$. Thus, $\left|\frac{\sin \left(n^{5}\right)}{n^{3 / 2}}\right| \leq \frac{1}{n^{3 / 2}}$. But the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges (it is a p-series with $p=3 / 2>1$). Thus, the Comparison Test tells us that the series $\sum_{n=1}^{\infty}\left|\frac{\sin \left(n^{5}\right)}{n^{3 / 2}}\right|$ also converges.
4. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+5}}$.

Solution: This series is conditionally convergent but not absolutely convergent. To see this, first observe that the sequence $\left\{\frac{1}{\sqrt{n^{2}+5}}\right\}_{n=1}^{\infty}$ is decreasing (because the function $f(x)=\sqrt{x^{2}+5}$ is increasing). Also,

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+5}}=0
$$

Thus, the Alternating Series Test says that the series converges. However, the series does not converge absolutely. To see this, we use the Limit Comparison Test to compare the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+5}}$ to the divergent series $\sum_{n=1}^{\infty} \frac{1}{n}$. We have

$$
\lim _{n \rightarrow \infty} \frac{1 / n}{1 / \sqrt{n^{2}+5}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+5}}{n}=\lim _{n \rightarrow \infty} \sqrt{1+5 / n^{2}}=1 \neq 0
$$

Thus, as $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we conclude that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+5}}$ also diverges.

