Math 1100 - Calculus, Quiz \#17A - 2010-03-29

1. Consider the parametric curve parameterized by the functions $x(t):=1+3 t^{2}$ and $y(t):=$ $4+2 t^{3}$, for all $t \in[-1,1]$.
(a) Compute $x^{\prime}(t)$ and $y^{\prime}(t)$.

Solution: $x^{\prime}(t)=6 t$ and $y^{\prime}(t)=6 t^{2}$.
(b) Find an expression for the slope of the curve at the point $(x(t), y(t))$, as a function of t.
Solution: slope $(t)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{6 t^{2}}{6 t}=t$.
(c) For what value(s) of t is the tangent line of the curve horizontal? For what value(s) of t is the tangent line of the curve vertical?
Solution: The tangent is horizontal when slope (t) is zero, which occurs if and only if $t=0$. The tangent is vertical when slope (t) is infinite, which never occurs for any value of t.
(d) Compute the arc length of the curve between $t=0$ and $t=1$.

Solution:

$$
\begin{aligned}
\text { arclength } & =\int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t=\int_{0}^{1} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} \mathrm{~d} t=\int_{0}^{1} \sqrt{36 t^{2}+36 t^{4}} \mathrm{~d} t \\
& =\int_{0}^{1} 6 t \sqrt{1+t^{2}} \mathrm{~d} t \overline{\overline{(*)}} \int_{1}^{2} 3 \sqrt{u} \mathrm{~d} u=\left.3 \frac{2}{3} u^{3 / 2}\right|_{u=1} ^{u=2} \\
& =2 \cdot\left(2^{3 / 2}-1\right)=2^{5 / 2}-2 .
\end{aligned}
$$

Here, (*) is the change of variables $u=1+t^{2}$, so that $\mathrm{d} u=2 t \mathrm{~d} t$.
2. Let $a_{n}:=\frac{n+1}{3 n}$ for all $n \in \mathbb{N}$. (So $a_{1}=\frac{2}{3}, a_{2}=\frac{1}{2}, a_{3}=\frac{4}{9}$, etc.)
(a) Is the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ convergent? If so, what is its limit?

Solution: Yes, the sequence is convergent. We have:

$$
\lim _{n \rightarrow \infty} \frac{n+1}{3 n}=\lim _{n \rightarrow \infty}\left(\frac{1}{3}+\frac{1}{3 n}\right)=\frac{1}{3}+\frac{1}{3} \lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{3}+0=\frac{1}{3} .
$$

(b) Is the series $\sum_{n=1}^{\infty} a_{n}$ convergent or divergent? If it is convergent, what is its sum?

Solution: The series is divergent, because $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
3. Is the series $\sum_{n=0}^{\infty} \frac{1+2^{n}}{3^{n}}$ convergent or divergent? If it is convergent, what is its limit?

Solution: This series is convergent. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1+2^{n}}{3^{n}} & =\sum_{n=0}^{\infty}\left(\frac{1}{3^{n}}+\frac{2^{n}}{3^{n}}\right) \\
& =\frac{1}{1-\frac{1}{3}}+\frac{1}{1-\frac{2}{3}}=\frac{1}{n=0}+\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} \\
3^{n} & =\frac{1}{2 / 3}+\frac{1}{1 / 3}=\frac{3}{2}+3=\frac{9}{2} .
\end{aligned}
$$

