Math 1100 - Calculus, Quiz \#13B - 2010-02-12

Let $f(x):=\sqrt[3]{x}$ for all $x \geq 0$, and consider the two-dimensional region \mathcal{R} defined by the constraints $f(x) \leq y \leq 1$ and $0 \leq x \leq 1$ (Figure A). Let \mathcal{S} be the 3 -dimensional solid obtained by rotating the region \mathcal{R} around the y axis (Figure B).

1. Compute the volume of \mathcal{S} using the method of disks. Draw a picture of the typical 'disk' cross-section of \mathcal{S}.
Solution: The bounds $0 \leq x \leq 1$ translate into bounds $0 \leq y \leq 1$. To apply method of disks, we must express x as a function of y. If $y=f(x)=\sqrt[3]{x}$, then $x=f^{-1}(y)=y^{3}$. The area of the disk at height y is $\pi\left(f^{-1}(y)\right)^{2}=\pi\left(y^{3}\right)^{2}=\pi y^{6}$. We will integrate the areas of these disks as y ranges from 0 to 1 . Thus, we have

$$
V=\pi \int_{0}^{1} y^{6} d y=\left.\frac{\pi}{7} y^{7}\right|_{y=0} ^{y=1}=\frac{\pi}{7} .
$$

2. Compute the volume of \mathcal{S} again, this time using the method of cylindrical shells. Draw a picture of the typical 'cylindrical shell' in \mathcal{S}. (Caution: \mathcal{R} is the area above the curve $y=f(x)$, not below this curve.)

Solution: For all $x \in[0,1]$, the cylinder of radius x is generated by the vertical line segment $f(x) \leq$ $y \leq 1$, which has height $(1-f(x))$, and hence, surface area $2 \pi x(1-f(x))=2 \pi x(1-\sqrt[3]{x})=$ $2 \pi\left(x-x^{4 / 3}\right)$. We must integrate these areas from $x=0$ to $x=1$. Thus,

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1}\left(x-x^{4 / 3}\right) d x=2 \pi\left(\frac{x^{2}}{2}-\frac{3 x^{7 / 3}}{7}\right)_{x=0}^{x=1} \\
& =2 \pi\left(\frac{1}{2}-\frac{3}{7}\right)=\pi-\frac{6 \pi}{7}=\frac{\pi}{7},
\end{aligned}
$$

in agreement with the answer to question \#1.

