
Math 1100 — Calculus, Quiz #13A — 2010-02-08
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Let f(x) :=
√

x for all x ≥ 0, and consider the two-dimensional region R defined by the
constraints f(x) ≤ y ≤ 1 and 0 ≤ x ≤ 1 (Figure A). Let S be the 3-dimensional solid obtained
by rotating the region R around the y axis (Figure B).

1. Compute the volume of S using the method of disks. Draw a picture of the typical ‘disk’(50)
cross-section of S.

Solution: The bounds 0 ≤ x ≤ 1 translate into bounds 0 ≤ y ≤ 1. To apply method of disks, we must

express x as a function of y. If y = f(x) =
√

x, then x = f−1(y) = y2. The area of the disk at

height y is π (f−1(y))2 = π (y2)2 = π y4. We will integrate the areas of these disks as y ranges

from 0 to 1. Thus, we have

V = π
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2. Compute the volume of S again, this time using the method of cylindrical shells. Draw
a picture of the typical ‘cylindrical shell’ in S. (Caution: R is the area above the curve(50)
y = f(x), not below this curve.)
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Method of disks Method of shells

Solution: For all x ∈ [0, 1], the cylinder of radius x is generated by the vertical line segment f(x) ≤
y ≤ 1, which has height (1 − f(x)), and hence, surface area 2πx (1 − f(x)) = 2πx(1 −

√
x) =

2π(x − x3/2). We must integrate these areas from x = 0 to x = 1. Thus,

V = 2π
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in agreement with the answer to question #1. 2
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