Math 1100 - Calculus, Quiz \#11A - 2010-01-25

Consider the function $f(x)=x^{3}+e^{x}$.

1. Define $F(y):=\int_{0}^{y} x^{3}+e^{x} d x$ for all $y \in \mathbb{R}$. Compute $F^{\prime}(y)$.

Solution: The Fundamental Theorem of Calculus says $F^{\prime}(y)=f(y)=y^{3}+e^{y}$ for all $y \in \mathbb{R}$.
2. Define $G(y):=\int_{0}^{\tan (y)} x^{3}+e^{x} d x$ for all $y \in \mathbb{R}$. Compute $G^{\prime}(y)$.

Solution: Observe that $G(y)=F(\tan (y))$. Thus,

$$
G^{\prime}(y) \overline{\overline{(c)}} F^{\prime}(\tan (y)) \cdot \tan ^{\prime}(y) \quad \overline{(\times)} \quad\left(\tan (y)^{3}+e^{\tan (y)}\right) \cdot \sec ^{2}(y),
$$

where (c) is the Chain Rule, and (*) is by question \#1
3. Express the integral $\int_{0}^{2} x^{3}+e^{x} d x$ as a limit of Riemann sums (do not evaluate this limit).

Solution: By definition, $\int_{a}^{b} f(x):=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f\left(x_{N ; n}\right) \Delta_{N}$, where $\Delta_{N}:=\frac{b-a}{N}$ and where $x_{N ; n}:=$ $a+n \Delta_{N}$ for all $n \in[1 \ldots N]$. In this case, $a=0$ and $b=2$, so $\Delta_{N}=2 / N$ and $x_{N ; n}=2 n / N$. Thus, we have
$\left.\int_{0}^{2} x^{3}+e^{x} d x=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(x_{N ; n}^{3}+\exp \left(x_{N ; n}\right)\right) \cdot \Delta_{N}=\lim _{N \rightarrow \infty} \frac{2}{N} \sum_{n=1}^{N}\left[\left(\frac{2 n}{N}\right)^{3}+\exp \left(\frac{2 n}{N}\right)\right].\right]$
(It would also be correct to sum from $n=0$ to $n=N-1$. More generally, it would be correct to define the integral using any 'sample points' $x_{N, 1}^{*}, x_{N, 2}^{*}, \ldots, x_{N, N}^{*}$ such that $x_{N, n}^{*} \in\left[x_{N, n-1}, x_{N, n}\right]$ for all $n \in[1 \ldots N])$.
4. Compute the general antiderivative of $f(x)$.

Solution: The general antiderivative is the function $F(x)=\frac{x^{4}}{4}+e^{x}+C$.
5. Compute the exact value of $\int_{0}^{2} x^{3}+e^{x} d x$.

Solution: The Fundamental Theorem of Calculus says

$$
\int_{0}^{2} x^{3}+e^{x}=F(2)-F(0)=\left(\frac{2^{4}}{4}+e^{2}\right)-\left(\frac{0^{4}}{4}+e^{0}\right)=\frac{16}{4}+e^{2}-1=3+e^{2} .
$$

