Math 1100 — Calculus, Quiz #11A — 2010-01-25

Consider the function $f(x) = x^3 + e^x$.

(20) 1. Define $F(y) := \int_0^y x^3 + e^x dx$ for all $y \in \mathbb{R}$. Compute F'(y).

Solution: The Fundamental Theorem of Calculus says $F'(y) = f(y) = y^3 + e^y$ for all $y \in \mathbb{R}$.

(20) 2. Define $G(y) := \int_0^{\tan(y)} x^3 + e^x dx$ for all $y \in \mathbb{R}$. Compute G'(y).

Solution: Observe that $G(y) = F(\tan(y))$. Thus,

$$G'(y) \equiv F'(\tan(y)) \cdot \tan'(y) \equiv \left(\tan(y)^3 + e^{\tan(y)}\right) \cdot \sec^2(y),$$

where (c) is the Chain Rule, and (*) is by question #1

(20) 3. Express the integral $\int_0^2 x^3 + e^x dx$ as a limit of Riemann sums (do not evaluate this limit).

Solution: By definition, $\int_a^b f(x) := \lim_{N \to \infty} \sum_{n=1}^N f(x_{N;n}) \Delta_N$, where $\Delta_N := \frac{b-a}{N}$ and where $x_{N;n} := a + n \Delta_N$ for all $n \in [1 \dots N]$. In this case, a = 0 and b = 2, so $\Delta_N = 2/N$ and $x_{N;n} = 2n/N$. Thus, we have

$$\int_0^2 x^3 + e^x dx = \lim_{N \to \infty} \sum_{n=1}^N \left(x_{N,n}^3 + \exp\left(x_{N,n}\right) \right) \cdot \Delta_N = \left[\lim_{N \to \infty} \frac{2}{N} \sum_{n=1}^N \left[\left(\frac{2n}{N}\right)^3 + \exp\left(\frac{2n}{N}\right) \right] \right].$$

(It would also be correct to sum from n=0 to n=N-1. More generally, it would be correct to define the integral using any 'sample points' $x_{N,1}^*, x_{N,2}^*, \ldots, x_{N,N}^*$ such that $x_{N,n}^* \in [x_{N,n-1}, x_{N,n}]$ for all $n \in [1...N]$).

(20) 4. Compute the general antiderivative of f(x).

Solution: The general antiderivative is the function $F(x) = \boxed{\frac{x^4}{4} + e^x + C}$.

(20) 5. Compute the exact value of $\int_0^2 x^3 + e^x dx$.

Solution: The Fundamental Theorem of Calculus says

$$\int_0^2 x^3 + e^x = F(2) - F(0) = \left(\frac{2^4}{4} + e^2\right) - \left(\frac{0^4}{4} + e^0\right) = \frac{16}{4} + e^2 - 1 = \boxed{3 + e^2}.$$