
Math 1100 — Calculus, HW #4 — Due Friday, April 9, 2010

Analytic Number Theory

Solutions

‘Common mistakes’ are indicated in your marked assignment with circled numbers, e.g. 1©, 2©, 3©, etc.

These labels are explained in the remarks following the solutions to each question.

Let N = {1, 2, 3, . . .} be the set of natural numbers. Number theory is the study of the
arithmetic structure of N; it is very important in the design of public key cryptosystems.

For any n,m ∈ N, we say that n divides m if there is some q ∈ N such that m = n q. For
example, 2 divides 6 because 6 = 2 · 3. However, 2 does not divide 7. Note that 1 divides
every number.

Let p ∈ N, with p ≥ 2. We say p is prime if the only numbers dividing p are 1 and p itself.
For example, 2 is prime, 3 is prime, 5 is prime, and 7 is prime. However, 4, 6, 8, and 9 are not

prime (because 4 = 2 ·2, 6 = 2 ·3, 8 = 2 ·4, 9 = 3 ·3, etc.). Let P := {2, 3, 5, 7, 11, 13, 17, . . .}
be the set of prime numbers. The Fundamental Theorem of Arithmetic says that every natural
number can be written in a unique way as a product of primes. That is: for any n ∈ N, there
exist primes p1 < p2 < · · · < pJ ∈ P and exponents k1, k2, . . . , kJ ∈ N such that

n = pk1
1 · pk2

2 · · · pkJ

J . (1)

Furthermore, for each n ∈ N, there is only one choice of primes p1 < p2 < · · · < pJ ∈ P and
exponents k1, k2, . . . , kJ ∈ N such that (1) is true. The prime factorization (1) acts as a kind
of ‘fingerprint’ for the number n. For this reason, prime numbers are of central importance
in number theory and cryptography.1

1. Let p ∈ N and let s > 0 be any real number. Show that
1

1 − p−s
=

∞
∑

n=0

1

psn
.( 10

100
)

Solution: The Geometric Series Identity says that, for any x ∈ R with |x| < 1, we have

∞
∑

n=0

xn =
1

1 − x
.

If s > 0, then ps > 1, so
1

ps
< 1. Setting x :=

1

ps
, we get:

∞
∑

n=0

(

1

ps

)n

=
1

1 − 1

ps

, as desired.

2

2. Let

(

∞
∑

n=0

an

)

and

(

∞
∑

n=0

bn

)

be two absolutely convergent series. Show that( 10

100
)

(

∞
∑

n=0

an

)

·

(

∞
∑

m=0

bm

)

=
∞
∑

n=0

∞
∑

m=0

an · bm.

1For example: the RSA cryptosystem uses the special properties of numbers of the form p q, where p and
q are two very large prime numbers. RSA is used to make secure electronic transactions on the internet. You
use RSA every time you buy something from Amazon.
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Solution:

(

∞
∑

n=0

an

)

·

(

∞
∑

m=0

bm

)

=
∞
∑

n=0

(

an ·
∞
∑

m=0

bm

)

=
∞
∑

n=0

(

∞
∑

m=0

an · bm

)

=
∞
∑

n=0

∞
∑

m=0

an·bm.

2

3. Let N2,3 be the set of all natural numbers formed by multiplying a power of 2 and a
power of 3. That is: N2,3 = {2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, . . .}. Combine #1 and
#2 to show, for all s > 0, that( 10

100
)

(

1

1 − 2−s

)

·

(

1

1 − 3−s

)

=
∑

n∈N2,3

1

ns

= 1 +
1

2s
+

1

3s
+

1

4s
+

1

6s
+

1

8s
+

1

9s
+

1

12s
+

1

16s
+

1

18s
+

1

24s
+

1

27s
+

1

32s
+ · · · · · ·

Solution:

(

1

1 − 2−s

)

·

(

1

1 − 3−s

)

#1

(

∞
∑

n=0

1

2sn

)

·

(

∞
∑

m=0

1

3sm

)

#2

∞
∑

n=0

∞
∑

m=0

1

2sn
·

1

3sm
=

∞
∑

n=0

∞
∑

m=0

1

(2n3m)s
=

∑

n∈N2,3

1

ns
.

2

4. For any J ∈ N, let PJ be the set of the first J prime numbers, and define

ζJ(s) :=
∏

p∈PJ

(

1

1 − p−s

)

.

For example, P7 = {2, 3, 5, 7, 11, 13, 17}, so ζ7(s) =
(

1

1 − 2−s

)

·

(

1

1 − 3−s

)

·

(

1

1 − 5−s

)

·

(

1

1 − 7−s

)(

1

1 − 11−s

)(

1

1 − 13−s

)(

1

1 − 17−s

)

.

Let NJ be the set of all natural numbers formed by multiplying powers of the first J

prime numbers. (For example, N7 is the set of all products of any powers of 2, 3, 5, 7,( 10

100
)

11, 13, and 17). By generalizing the argument from question #3, one can show that

ζN(s) =
∑

n∈NJ

1

ns
, for all s > 0.

(You can just assume this statement.) The Riemann Zeta Function is defined:

ζ(s) := lim
J→∞

ζJ(s) =
∏

p∈P

(

1

1 − p−s

)

, (2)

for any s ∈ R where this limit exists. Find a formula for ζ(s) as a familiar infinite
series. (Hint: Use the Fundamental Theorem of Arithmetic). Using your formula, conclude
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that the limit (2) converges to a finite value if s > 1, but the limit (2) diverges to
infinity if s ≤ 1. 2

Solution:

ζ(s) = lim
J→∞

ζJ(s) = lim
J→∞

∑

n∈NJ

1

ns (∗)

∞
∑

n=1

1

ns
.

To see (∗), observe that the Fundamental Theorem of Arithmetic says: for every n ∈ N, there is
some J such that n ∈ NJ .

Finally, note that the series is a ‘p-series’ (where p = s). We know from §11.3 that this series

converges if and only if s > 1. 2

5. Let M be the set of all natural numbers which are not divisible by 2, 3, or 5 . (That is:
M = {1, 7, 11, 13, 14, 17, 23, 29, 31, 37, 41, 43, 47, 49, . . .}.) In particular, observe that( 15

100
)

M contains 31, 61, 91, 121, and in general, all numbers of the form 30 · k + 1, for any

k ∈ N. Deduce that the series
∑

m∈M

1

m
diverges.

Solution: M contains the set {30 · k + 1 ; k ∈ N}. Thus,

∑

m∈M

1

m
≥

∞
∑

k=1

1

30k + 1
≥

∞
∑

k=1

1

30k + 30
=

∞
∑

k=1

1

30(k + 1)

=
∞
∑

j=2

1

30j
=

1

30

∞
∑

j=2

1

j (∗)
∞,

where (∗) is because the Harmonic Series diverges. Thus, the Comparison Test implies that
∑

m∈M

1

m
diverges. 2

6. Let {p1, p2, p3, p4, . . .} be the sequence of prime numbers (thus, p1 = 2, p2 = 3, p3 = 5,

p4 = 7, etc.). Consider the series
∞
∑

j=4

1

pj

=
1

7
+

1

11
+

1

13
+

1

17
+ · · ·.

Suppose that this series converges to some finite value α. Show that α ≥ 1.

(Hint. Suppose 0 < α < 1. Use question #2 and the Fundamental Theorem of Arithmetic to show

that

∞
∑

n=0

αn =
∑

m∈M

1

m
. Now derive a contradiction from #5.)( 20

100
)

2This formula was discovered by Leonhard Euler around 1740. In 1859, Bernhard Riemann showed how
to extend ζ to a function defined on the complex numbers. He then showed that the distribution of prime
numbers in N is closely related to the locations of the zeros of ζ in the complex plane, and he formed a
conjecture about the locations of these zeros. This is the famous Riemann Hypothesis. One hundred and
fifty years later, we still cannot either prove or disprove the Riemann Hypothesis; it is perhaps the most
important unsolved problem in analytic number theory.
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Solution: Suppose 0 < α < 1. Then the geometric series
∞
∑

n=0

αn converges. But

α2 =





∞
∑

j=4

1

pj





2

=

(

∞
∑

i=4

1

pi

)

·





∞
∑

j=4

1

pj



 =
∞
∑

i,j=4

1

pi pj

,

and likewise,

α3 =





∞
∑

j=4

1

pj





3

=

(

∞
∑

i=4

1

pi

)

·





∞
∑

j=4

1

pj



 ·

(

∞
∑

k=4

1

pk

)

=
∞
∑

i,j,k=4

1

pi pj pk

,

and more generally, for any N ∈ N,

αN =





∞
∑

j=4

1

pj





N

=
∞
∑

i1,i2,...,iN=4

1

pi1pi2 · · · piN

.

However, the Fundamental Theorem of Arithmetic implies that every element m ∈ M can be
written in exactly one way as a m = pi1pi2 · · · piN for some i1, i2, . . . , iN ≥ 4. Thus,

∞
∑

N=0

αN =
∞
∑

N=0

∞
∑

i1,i2,...,iN=4

1

pi1pi2 · · · piN

=
∑

m∈M

1

m
.

But from question #5, we know that
∑

m∈M

1

m
= ∞. It follows that

∞
∑

N=0

αN = ∞. But this means

that α ≥ 1. Contradiction. 2

7. Consider the series

∞
∑

n=1

1

pn

=
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+ · · · (3)

By generalizing #6, one can show that, for any N ∈ N, if the series
∞
∑

j=N

1

pj

converges( 10

100
)

at all, then it must converge to some α ≥ 1 (you can just assume this). Use this fact
to deduce that, in fact, the series (3) diverges.

Solution: (By contradiction) Suppose
∞
∑

n=1

1

pn

converges to some finite limit L. This means that

lim
N→∞

N
∑

n=1

1

pn

= L. Thus, for every ǫ > 0, there is some N > 0 such that

∣

∣

∣

∣

∣

L −
N
∑

n=1

1

pn

∣

∣

∣

∣

∣

< ǫ.

However,

L −

N
∑

n=1

1

pn

=

(

∞
∑

n=1

1

pn

)

−

(

N
∑

n=1

1

pn

)

=

∞
∑

n=N+1

1

pn

.
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Thus, we are really saying that
∞
∑

n=N+1

1

pn

< ǫ. But the generalization of #6 says that

∞
∑

n=N+1

1

pn

> 1 for all N ∈ N. Since ǫ can be made arbitrarily small, we have a contradic-

tion. 2

8. Conclude that there exists some N ∈ N such that pn < n log(n)2 for all n ≥ N . 3( 15

100
)

Solution: (by contradiction) First note that:

∫

∞

1

1

x log(x)2
dx

(∗)

∫

∞

1

1

u2
du =

−1

u

∣

∣

∣

u=∞

u=1
= 1.

where (∗) is the substitution u = log(x) so that du = 1

x
dx.

Thus, the Integral Test implies that the series
∞
∑

n=1

1

n log(n)2
converges.

Now, suppose pn ≥ n log(n)2 for all n ∈ N. Then
1

pn

≤
1

n log(n)2
for all n ∈ N. Thus, the

Comparison Test implies that the series

∞
∑

n=1

1

pn

also converges. But this contradicts the conclusion

of question #7. 2

3Note that the function log(n)2 increases quite slowly as n→∞. Thus, this result tells us that the se-
quence {p1, p2, p3, . . .} increases ‘just barely faster’ than the sequence {1, 2, 3, . . .}. In particular, the sequence
{p1, p2, p3, . . .} increases more slowly than the sequence {1α, 2α, 3α, . . .} for any exponent α > 1. This has
implications for the ‘density’ of prime numbers in N. It suggests that the sequence of prime numbers grows
roughly like n log(n). Indeed, for any n ∈ N, let π(n) be the number of primes in [1...n]. Thus, π(n)/n is the
‘density’ of primes in [1...n]. The Prime Number Theorem states that

lim
n→∞

π(n)/n

1/ ln(n)
= 1.

This means: if n is large, then roughly 1/ ln(n) of the numbers in [1...n] are prime. This theorem was proved
independently by Hadamard and de la Vallée Poussin in 1896 (the proof is very complicated).
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