
Math 1100 — Calculus, Final Exam — 2010-04-12

1. Recall that arctan′(x) =
1

1 + x2
.

(a) Use this fact to obtain a MacLaurin series for arctan(x).( 5
200 )

Solution: The Geometric Series formula tells us that

1

1 + x2
=

1

1 − (−x2)
=

∞
∑

n=0

(−x2)n =

∞
∑

n=0

(−1)n x2n,

for all x ∈ (−1, 1). But arctan′(x) =
1

1 + x2
. Thus, the Fundamental Theorem of Calculus

says that

C + arctan(x) =

∫

arctan′(x) dx =

∫

1

1 + x2
dx =

∫ ∞
∑

n=0

(−1)n x2n dx

=

∞
∑

n=0

(−1)n

∫

x2n dx =

∞
∑

n=0

(−1)n x2n+1

2n + 1
,

for all x ∈ (−1, 1), where C is some constant. Setting x = 0, we get

0 =

∞
∑

n=0

(−1)n 02n+1

2n + 1
= C + arctan(0) = C + 0,

so we conclude that C = 0. Thus, arctan(x) =

∞
∑

n=0

(−1)n x2n+1

2n + 1
.

Common mistakes and remarks on grading: Some people set up the right power series, but

wrote “
∞
∑

n=1

” (i.e. they forgot the n = 0 term). This got 4/5 marks

Some people tried to compute the MacLaurin series ‘the hard way’, by explicitly computing
arctan′(0), arctan′′(0), arctan′′′(0), arctan(4)(0), etc. and looking for a pattern. It is pretty
much impossible to make this approach work out. These people got 2/5 for heroic effort.
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(b) Now obtain a MacLaurin series for f(y) :=
arctan(y3)

y2
.( 5

200 )

Solution: Let x := y3. Then x ∈ (−1, 1) if and only if y ∈ (−1, 1). If we substitute x = y3 into
the MacLaurin series in part (a), we get

arctan(y3) =
∞
∑

n=0

(−1)n (y3)2n+1

2n + 1
=

∞
∑

n=0

(−1)n y6n+3

2n + 1
, for all y ∈ (−1, 1).

Now we divide each term by y2 to obtain:

arctan(y3)

y2
=

∞
∑

n=0

(−1)n y6n+1

2n + 1
, for all y ∈ (−1, 1).

2



(c) Compute f (61)(0) (i.e. the 61st derivative of f at zero).( 5
200 )

Solution: Let a61 be the 61st coefficient in the MacLaurin serie from part (b). Then a61 is the

coefficient of y6n+1 where 6n + 1 = 61 —hence n = 10, hence a61 =
(−1)10

2 · 10 + 1
=

1

21
. Thus,

f (61)(0) = 61! · a61 =
61!

21
.

Common mistakes and remarks on grading: Some people substituted n = 61 instead of

n = 10, and ended up with
61!

123
. This got 3/5 marks.

2

(d) Now obtain a MacLaurin series for the general antiderivative

∫

arctan(x3)

x2
dx.( 5

200 )

Solution: We antidifferentiate the power series in part (b):

∫

arctan(x3)

x2
dx =

∫ ∞
∑

n=0

(−1)n x6n+1

2n + 1
dx =

∞
∑

n=0

∫

(−1)n x6n+1

2n + 1
dx

=
∞
∑

n=0

(−1)n x6n+2

(2n + 1)(6n + 2)
+ C,

where C is an arbitrary constant. 2

(e) Use the Ratio Test to determine the radius of convergence of the MacLaurin series( 10
200 )

you derived in part (d).

Solution: Fix x ∈ R, and define an :=
(−1)n x6n+2

(2n + 1)(6n + 2)
. Then

|an+1|
|an|

=

|x6(n+1)+2|
(2(n + 1) + 1)(6(n + 1) + 2)

|x6n+2|
(2n + 1)(6n + 2)

=
|x6n+8|
|x6n+2| ·

(2n + 1)(6n + 2)

(2n + 3)(6n + 8)

= |x|6 · (2n + 1)(6n + 2)

(2n + 3)(6n + 8)
.

Thus, lim
n→∞

|an+1|
|an|

= lim
n→∞

|x|6 · (2n + 1)(6n + 2)

(2n + 3)(6n + 8)
= |x|6 · lim

n→∞

(2n + 1)(6n + 2)

(2n + 3)(6n + 8)

= |x|6 ·
(

lim
n→∞

2n + 1

2n + 3

)

·
(

lim
n→∞

6n + 2

6n + 8

)

= |x|6.

Thus,
( |an+1|

|an|
< 1

)

⇐⇒
(

|x|6 < 1
)

⇐⇒
(

|x| < 1
)

.

Thus, the radius of convergence is R = 1 .

Common mistakes and remarks on grading: A lot of people correctly set up the Ratio test,

but then screwed up the execution and ended up with the wrong answer. This generally got

2/10 marks. 2

2. Determine whether the following series are divergent, conditionally convergent, or abso-
lutely convergent.



(a)
∞

∑

n=1

(−1)n n√
n2 + 1

.( 15
200 )

Solution: This series is divergent. To see this, observe that

lim
n→∞

n√
n2 + 1

= lim
n→∞

1
√

1 + 1/n2
= 1.

Thus, the summands to not converge to zero. The series must diverge. 2

(b)

∞
∑

n=1

(−1)n n√
n4 + 1

.( 15
200 )

Solution: This series is conditionally convergent. To see this, observe that the sequence

{

n√
n4 + 1

}

∞

n=1
is decreasing. Also,

lim
n→∞

n√
n4 + 1

= lim
n→∞

1
√

n2 + 1/n2
= 0.

Thus, the Alternating Series Test says the series converges. However, the series does not

converge absolutely. To see this, we use the Ratio Comparison Test to compare the series
∞
∑

n=1

n√
n4 + 1

to the (divergent) series
∞
∑

n=1

1

n
. We have

lim
n→∞

1/n

n/
√

n4 + 1
= lim

n→∞

√
n4 + 1

n2
= lim

n→∞

√

1 + 1/n4 = 1.

Thus, as the series series

∞
∑

n=1

1

n
diverges, the series

∞
∑

n=1

n√
n4 + 1

also diverges. Thus, the series

∞
∑

n=1

(−1)n n√
n4 + 1

is not absolutely convergent.

Common mistakes and remarks on grading: People got 8/10 if they showed the series
converged conditionally (using alternating series test), but failed to address the issue of abso-
lute convergence. Likewise, people got 8/10 if they showed that the series does not converge
absolutely, but failed to show that it converges conditionally.

Several people attempted to use the Ratio Test to answer #2(a) and #2(b). The Ratio Test is

inconclusive in this case (the limit ratio is 1), so this is not a good strategy. These people got

4 marks for a correct attempt, however. 2

3. Compute the following integrals:

(a)

∫

x + 12

(x + 5)(x − 2)
dx.( 15

200 )

Solution: We wish to find constants A and B such that

x + 12

(x + 5)(x − 2)
=

A

x + 5
+

B

x − 2
=

A(x − 2) + B(x + 5)

(x + 5)(x − 2)
=

(A + B)x + (5B − 2A)

(x + 5)(x − 2)
.

Thus, we need (A + B)x + (5B − 2A) = x + 12, which is equivalent to the system of linear
equations

A + B = 1; (1)

5B − 2A = 12. (2)



Adding 2 times equation (1) to equation (2), we get

7B + 0A = 14.

Thus, B = 2. Substituting this into equation (1), we get A + 2 = 1; hence A = −1. Putting it
together, we have

x + 12

(x + 5)(x − 2)
=

−1

x + 5
+

2

x − 2
.

Thus,

∫

x + 12

(x + 5)(x − 2)
dx =

∫ −1

x + 5
+

2

x − 2
dx =

∫ −1

x + 5
dx +

∫

2

x − 2
dx

= − ln |x + 5| + 2 ln |x − 2| + C.

2

(b)

∫

cos(x)7

sin(x)9
dx.( 15

200 )

Solution: Recall that cot(x) =
cos(x)

sin(x)
, and cot′(x) = − csc(x)2 =

−1

sin(x)2
. Thus,

cos(x)7

sin(x)9
=

cos(x)7

sin(x)7
· 1

sin(x)2
= cot(x)7 · csc(x)2 = − cot(x)7 · cot′(x).

Thus,

∫

cos(x)7

sin(x)9
dx = −

∫

cot(x)7 · cot′(x) dx
(∗)

−
∫

u7 du = −u8

8
+ C

(∗)
−cot(x)8

8
+ C.

where (∗) is the substitution u := cot(x) so that du = cot′(x) dx.

Another solution: Recall that cos(x)2 = 1 − sin(x)2. Thus

cos(x)6 = (cos(x)2)3 = (1 − sin(x)2)3 = 1 − 3 sin(x)2 + 3 sin(x)4 − sin(x)6.

Thus,
cos(x)7

sin(x)9
=

cos(x) · cos(x)6

sin(x)9
=

(

1 − 3 sin(x)2 + 3 sin(x)4 − sin(x)6
)

· cos(x)

sin(x)9
.

Thus,

∫

cos(x)7

sin(x)9
dx =

∫

1 − 3 sin(x)2 + 3 sin(x)4 − sin(x)6

sin(x)9
· cos(x) dx

(∗)

∫

1 − 3u2 + 3u4 − u6

u9
du =

∫

u−9 − 3u−7 + 3u−5 − u−3 du

=
−u−8

8
+

3u−6

6
− 3u−4

4
+

u−2

2
+ C

=
−1

8u8
+

1

2u6
− 3

4u4
+

1

2u2
+ C.

(∗)

−1

8 sin(x)8
+

1

2 sin(x)6
− 3

4 sin(x)4
+

1

2 sin(x)2
+ C.

Here (∗) is the substitution u := sin(x), so that du = cos(x) dx. 2

(c)

∫

x5 ln(x) dx.( 15
200 )

Solution: We use integration by parts. Let u := ln(x) and dv := x5 dx. Then du =
1

x
dx and

v =
x6

6
. Thus,

∫

x5 ln(x) dx =

∫

u dv = uv −
∫

v du =
ln(x)x6

6
−

∫

x6

6
· 1

x
dx



=
ln(x)x6

6
−

∫

x5

6
dx =

ln(x)x6

6
− x6

36
+ C.

2

4. Consider the improper integral

∫

∞

1

arctan(x) ·
√

x3 − 1

x5 · (1 + sin(x)2)
dx. Is this integral convergent( 10

200 )

or divergent? (The antiderivative is not required.)

Solution: We will use the Comparison Test. Observe that (1 + sin(x)2) ≥ 1 and 0 ≤ arctan(x) ≤ π
2 for

all x > 0. Thus,

arctan(x) ·
√

x3 − 1

x5 · (1 + sin(x)2)
≤ π ·

√
x3 − 1

2x5
≤ π ·

√
x3

2x5
=

π

2

1

x7/2

However, the improper integral

∫

∞

1

1

x7/2
dx converges (because 7/2 > 1). Thus, the Comparison

Test says that the improper integral

∫

∞

1

arctan(x) ·
√

x3 − 1

x5 · (1 + sin(x)2)
dx also converges. 2

5. Let f(x) := 2x3 + 3x2 − 36x.

(a) Find the intervals where f is increasing, and the intervals where f is decreasing.( 5
200 )

Solution: f ′(x) = 6x2 + 6x − 36 = 6(x2 + x − 6) = 6(x + 3)(x − 2). Thus, f ′ has zeros at
x = −3 and x = 2. We make a table to identify the increasing/decreasing intervals of f :

x + 3 x − 2 f ′(x) f
x < −3 negative negative positive increasing

−3 < x < 2 positive negative negative decreasing
2 < x positive positive positive increasing

2

(b) Find all the local maxima and local minima of f .( 5
200 )

Solution: f is differentiable everywhere, so any extremal point of f must be a zero of f ′ (by
Fermat’s theorem). The only zeros of f ′ are at x = −3 and x = 2. According to the ‘first

derivative test’, x = −3 is a local maximum and x = 2 is a local minimum.

(The actual value at the maximum is f(−3) = 81. The value at the minimum is f(2) = −44.

But you are not required to compute this.) 2

(c) Find the intervals where f is concave-up and the intervals where f is concave-down.( 5
200 )

Solution: f ′′(x) = 12x + 6 = 12(x + 1
2 ) Thus, f ′′(x) = 0 only if x = −1

2 . We make a table to
identify the concavity intervals of f :

12(x + 1
2 ) Concavity

x < −1
2 negative concave down

−1
2 < x positive concave up

2

(d) Find the inflection points of f .( 5
200 )

Solution: The inflection points are places where f changes from concave up to concave down or

vice versa. The only inflection point is at x = −1
2 . 2



(e) Use the information from parts (a)-(d) to sketch the graph of f . (Don’t worry about( 5
200 )

x-intercepts).

Solution:

inf
lec

tio
n

po
int

-1/2 2 3-1-2

increasing increasing

concave down concave up

maximum

minimum

decreasing

-3 1

2

6. Compute lim
x→0

(1 − 2x)1/x.( 15
200 )

Solution: Note that lim
x→0

(1− 2x) = 1 and lim
x→0

(1/x) = ∞. Thus, this is an indeterminate form of type

“1∞”. Our first step is to take a logarithm:

log
(

lim
x→0

(1 − 2x)1/x
)

= lim
x→0

log
(

(1 − 2x)1/x
)

= lim
x→0

log(1 − 2x)

x
. (3)

Now, lim
x→0

log(1 − 2x) = log(1) = 0 and lim
x→0

x = 0, so we have an indeterminate form of type

“0/0”. If f(x) = log(1 − 2x) and g(x) = x, then f ′(x) =
−2

1 − 2x
and g′(x) = 1, so

lim
x→0

log(1 − 2x)

x
= lim

x→0

f(x)

g(x) (H)
lim
x→0

f ′(x)

g′(x)
= lim

x→0

−2

1 − 2x
= −2, (4)

where (H) is by l’Hospital’s rule. Combining (3) and (4), we get log
(

lim
x→0

(1 − 2x)1/x
)

= −2; thus,

lim
x→0

(1 − 2x)1/x = e−2 .

Common mistakes and remarks on grading: People got 5/15 for identifying this as an indeter-
minate form of type “0/0” and applying the natural logarithm (but then screwing up the rest of the
problem).

Some people got all the way to the end, but then forgot to apply the exponential map and left “−2”

as their final answer. This got 10/15 marks. 2



7. Suppose F (x) =

∫ x2

0

√

1 + r3 dr, for all x ∈ R. Compute F ′(x).( 15
200 )

Solution: Define the function G : R+−→R by G(y) :=

∫ y

0

√

1 + r3 dr, for all y ∈ R+. Then

F (x) = G(x2) for all x ∈ R. Thus,

F ′(x)
(∗)

G′(x2) · 2x
(†)

√

1 + x6 · 2x.

Here, (∗) is the Chain rule, and (†) is because G′(y) =
√

1 + y3, by the Fundamental Theorem of
Calculus.

Common mistakes and remarks on grading: A lot of people completely missed the point of this
question. Instead of trying to use the Fundamental Theorem of Calculus, they attempted a brute force
antidifferentiation. This, of course, is hopeless (and these people usually wrote a bunch of nonsense).
This generally got around 3/15 marks.

People got 5/15 for indicating some vague understanding that the Fundamental Theorem of Calculus
was relevant here (but failing to carry it through).

Some people basically had the right idea, but screwed up using the Chain Rule and ended up with the
answer “F ′(x) =

√
1 + x6”. This got 10/15 marks.

One crazy person used Newton’s Binomial Formula to get a MacLaurin series for the function
√

1 + r3,

and then antidifferentiated this MacLaurin series. This is definitely way too complicated an approach.

However, it was creative, and correctly used a high-powered technique to answer the problem, so this

person got 15/15. 2

8. Let f : R−→R be an unknown function, such that sin (f(x)) = tan(x) · ln(x). Use this
information to express f ′(x) as a function of x and f(x).( 10

200 )

Solution: We have

sin (f(x)) = tan(x) · ln(x).

Differentiate to get: sin′ (f(x)) · f ′(x) = tan′(x) · ln(x) + tan(x) · ln′(x).

That is: cos (f(x)) · f ′(x) = sec2(x) · ln(x) +
tan(x)

x
.

Now simplify: f ′(x) =
1

cos (f(x))

(

sec2(x) · ln(x) +
tan(x)

x

)

.

Common mistakes and remarks on grading: A lot of people wrote f(x) = arcsin (tan(x) · ln(x))
and then tried to differentiate this expression. Most of these people screwed this up because they
couldn’t apply the Chain Rule and/or Liebniz rule correctly. However, a few people did it properly
and ended up with the answer:

f ′(x) =
1

√

1 − tan(x)2 · ln(x)2

(

sec2(x) · ln(x) +
tan(x)

x

)

.

This answer is correct and got full marks. (By employing the hypothesized identity sin(f(x)) =

tan(x) · ln(x) and using Pythagoras’ theorem, you can check that this is in fact equal to the previous

answer.) 2

9. Let C be the curve parameterized by x(t) = 1 + 3t2 and y(t) = 4 + t3, for t ∈ [0, 1].



(a) Find a formula for the slope S(t) = dy
dx(t), as a function of t.( 10

200 )

Solution: If x(t) = 1 + 3t2, then x′(t) = 6t. If y(t) = 4 + t3, then y′(t) = 3t2. Thus,

S(t) =
y′(t)

x′(t)
=

3t2

6t
=

t

2
. 2

(b) Compute the arc-length of C.( 10
200 )

Solution: If x(t) = 1 + 3t2 and y(t) = 4 + t3, then x′(t) = 6t and y′(t) = 3t2.

Thus, x′(t)2 = 36t2 and y′(t)2 = 9t4. Thus,

√

x′(t)2 + y′(t)2 =
√

36t2 + 9t4 =
√

9t2(4 + t2). = 3t
√

t2 + 4.

Thus, arclength(C) =

∫ 1

0

√

x′(t)2 + y′(t)2 dt =

∫ 1

0

3t
√

t2 + 4 dt
(∗)

3

2

∫ 5

4

√
u du

=
3

2

2

3
u3/2

∣

∣

∣

u=5

u=4
= 53/2 − 43/2 =

√
125 − 8.

Here, (∗) is the substitution u := t2 + 4, so du = 2t dt, so du/2 = t dt. Also, (t = 0) =⇒
(u = 4) and (t = 1) =⇒ (u = 5).

Common mistakes and remarks on grading: Some people did a crazy trigonometric substitu-
tion t := 2 tan(θ) so that dt = 2 sec(θ)2 dθ and then antidifferentiated the resulting expression
to end up with the answer 8 sec3 (arctan(1/2)) − 8. By drawing the appropriate right-angle
triangle you can check that in fact, sec3 (arctan(1/2)) =

√
125. So this answer is correct and

got full marks.

2


