MATH 11012009 Midterm Test 1 Solution

November 25, 2009
Dr. Bing Zhou
Name \qquad

Instructions. All answers should be clear and complete. Show all your work. Partial credit will be given only to the part of your work that leads to a correct answer. If you have any question about the meaning of a problem, ask! (Total 2 pages and 20 points.)

1. (10 points) Find $\frac{d y}{d x}$. (Do not simplify).
(a) (2) $y=\left(x^{3}+2 x+1\right) \tan x$

Solution:

$$
\frac{d y}{d x}=\left(3 x^{2}+2\right) \tan x+\left(x^{3}+2 x+1\right) \sec ^{2} x
$$

(b) (3) $y=e^{\sin 3 x}$

Solution:

$$
\frac{d y}{d x}=e^{\sin 3 x} \cdot \cos 3 x \cdot 3
$$

(c) (5) $x^{2}+y^{2}=\ln \left(x y^{2}\right)$

Solution:

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =\frac{1}{x y^{2}}\left(y^{2}+x(2 y) \frac{d y}{d x}\right) \\
2 x+2 y \frac{d y}{d x} & =\frac{1}{x}+\frac{2}{y} \frac{d y}{d x} \\
\left(2 y-\frac{2}{y}\right) \frac{d y}{d x} & =\frac{1}{x}-2 x \\
\frac{d y}{d x} & =\frac{\frac{1}{x}-2 x}{2 y-\frac{2}{y}}
\end{aligned}
$$

2. (3 points) Find the limit

$$
\lim _{x \rightarrow \infty} x \tan \left(\frac{3}{x}\right)
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x \tan \left(\frac{3}{x}\right) \\
= & \lim _{x \rightarrow \infty} \frac{\tan \left(\frac{3}{x}\right)}{\frac{1}{x}}\left(\frac{0}{0}\right) \\
= & \lim _{x \rightarrow \infty} \frac{\sec ^{2}\left(\frac{3}{x}\right) \cdot 3 \cdot\left(-\frac{1}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)} \\
= & \lim _{x \rightarrow \infty} \frac{\sec ^{2}\left(\frac{3}{x}\right) \cdot 3}{1}=3,
\end{aligned}
$$

since $\sec (0)=1$.
3. (7 points) Let $f(x)=\frac{x}{500 x-1}$
(a) Find the domain of f.

Solution: Let $500 x-1=0 . x=\frac{1}{500}$. The domain is $\left(-\infty, \frac{1}{500}\right) \cup\left(\frac{1}{500}, \infty\right)$.
(b) Find the horizontal and vertical asymptotes if they exist.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{500 x-1} & =\lim _{x \rightarrow \infty} \frac{1}{500-\frac{1}{x}}=\frac{1}{500} \\
\lim _{x \rightarrow-\infty} \frac{x}{500 x-1} & =\frac{1}{500}
\end{aligned}
$$

$y=\frac{1}{500}$ is a horizontal asymptote.

$$
\begin{aligned}
\lim _{x \rightarrow\left(\frac{1}{500}\right)^{+}} \frac{x}{500 x-1} & =\infty \\
\lim _{x \rightarrow\left(\frac{1}{500}\right)^{-}} \frac{x}{500 x-1} & =-\infty
\end{aligned}
$$

$x=\frac{1}{500}$ is a vertical asymptote.
(c) Find the intervals of increase or decrease.

$$
f^{\prime}=\frac{500 x-1-500 x}{(500 x-1)^{2}}=\frac{-1}{(500 x-1)^{2}}<0
$$

$f(x)$ is decreasing on $\left(-\infty, \frac{1}{500}\right) \cup\left(\frac{1}{500}, \infty\right)$.
(d) Find the intervals of concavity.

$$
\begin{aligned}
f^{\prime \prime} & =\left(-(500 x-1)^{-2}\right)^{\prime} \\
& =2(500 x-1)^{-3} \cdot 500 \\
& =\frac{1000}{(500 x-1)^{3}}
\end{aligned}
$$

$f^{\prime \prime}>0$ on $\left(\frac{1}{500}, \infty\right)$ and $f^{\prime \prime}<0$ on $\left(-\infty, \frac{1}{500}\right) . f$ is concave downward on $\left(-\infty, \frac{1}{500}\right)$ and concave upward on $\left(\frac{1}{500}, \infty\right)$.

