MATH 1101 2009 Midterm Test 1 Solution

Name ____

NOVEMBER 25, 2009

Dr. Bing Zhou

Instructions. All answers should be clear and complete. Show all your work. Partial credit will be given only to the part of your work that leads to a correct answer. If you have any question about the meaning of a problem, ask! (Total 2 pages and 20 points.)

- 1. (10 points) Find $\frac{dy}{dx}$. (Do not simplify).
 - (a) (2) $y = (x^3 + 2x + 1) \tan x$ Solution:

$$\frac{dy}{dx} = (3x^2 + 2)\tan x + (x^3 + 2x + 1)\sec^2 x$$

(b) (3) $y = e^{\sin 3x}$ Solution:

$$\frac{dy}{dx} = e^{\sin 3x} \cdot \cos 3x \cdot 3$$

(c) (5) $x^2 + y^2 = \ln(xy^2)$ Solution:

$$2x + 2y\frac{dy}{dx} = \frac{1}{xy^2} \left(y^2 + x \left(2y \right) \frac{dy}{dx} \right)$$
$$2x + 2y\frac{dy}{dx} = \frac{1}{x} + \frac{2}{y}\frac{dy}{dx}$$
$$\left(2y - \frac{2}{y} \right) \frac{dy}{dx} = \frac{1}{x} - 2x$$
$$\frac{dy}{dx} = \frac{\frac{1}{x} - 2x}{2y - \frac{2}{y}}.$$

- 2. (3 points) Find the limit
- $\lim_{x \to \infty} x \tan\left(\frac{3}{x}\right).$

.

Solution:

$$\lim_{x \to \infty} x \tan\left(\frac{3}{x}\right)$$

$$= \lim_{x \to \infty} \frac{\tan\left(\frac{3}{x}\right)}{\frac{1}{x}} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to \infty} \frac{\sec^2\left(\frac{3}{x}\right) \cdot 3 \cdot \left(-\frac{1}{x^2}\right)}{\left(-\frac{1}{x^2}\right)}$$

$$= \lim_{x \to \infty} \frac{\sec^2\left(\frac{3}{x}\right) \cdot 3}{1} = 3,$$

since $\sec(0) = 1$.

- 3. (7 points) Let $f(x) = \frac{x}{500x-1}$
 - (a) Find the domain of f. Solution: Let 500x - 1 = 0. $x = \frac{1}{500}$. The domain is $\left(-\infty, \frac{1}{500}\right) \cup \left(\frac{1}{500}, \infty\right)$.

(b) Find the horizontal and vertical asymptotes if they exist.

$$\lim_{x \to \infty} \frac{x}{500x - 1} = \lim_{x \to \infty} \frac{1}{500 - \frac{1}{x}} = \frac{1}{500}$$
$$\lim_{x \to -\infty} \frac{x}{500x - 1} = \frac{1}{500}$$

 $y = \frac{1}{500}$ is a horizontal asymptote.

$$\lim_{x \to \left(\frac{1}{500}\right)^+} \frac{x}{500x - 1} = \infty$$
$$\lim_{x \to \left(\frac{1}{500}\right)^-} \frac{x}{500x - 1} = -\infty$$

 $x = \frac{1}{500}$ is a vertical asymptote.

(c) Find the intervals of increase or decrease.

$$f' = \frac{500x - 1 - 500x}{\left(500x - 1\right)^2} = \frac{-1}{\left(500x - 1\right)^2} < 0$$

- f(x) is decreasing on $\left(-\infty, \frac{1}{500}\right) \cup \left(\frac{1}{500}, \infty\right)$.
- (d) Find the intervals of concavity.

$$f'' = \left(-(500x-1)^{-2}\right)' \\ = 2(500x-1)^{-3} \cdot 500 \\ = \frac{1000}{(500x-1)^3}$$

f'' > 0 on $\left(\frac{1}{500}, \infty\right)$ and f'' < 0 on $\left(-\infty, \frac{1}{500}\right)$. f is concave downward on $\left(-\infty, \frac{1}{500}\right)$ and concave upward on $\left(\frac{1}{500}, \infty\right)$.