MATH 1101Y 2009 Quiz 7 (b)

1. Let $f(x)=2 x^{3}-9 x^{2}-24 x$.
(a) (2 pts) Find the intervals of increase or decrease.
(b) (1 pts) Find the local maximum and minimum values.
(c) (2 pts) Find the intervals of concavity and the inflection points.

Solution: $f^{\prime}(x)=6 x^{2}-18 x-24$.
Let $f^{\prime}(x)=0$. We have

$$
\begin{array}{r}
6 x^{2}-18 x-24=0 \\
x^{2}-3 x-4=0 \\
(x+1)(x-4)=0
\end{array}
$$

$f^{\prime}=0$ when $x=-1$ or $x=4$.
Since

$$
\begin{aligned}
f^{\prime}(-2)= & 6(-2)^{2}-18(-2)-24 \\
= & 36, \\
& f^{\prime}(0)=-24,
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime}(5) & =6(5)^{2}-18(5)-24 \\
& =36
\end{aligned}
$$

$f^{\prime}>0$ on $(-\infty,-1) \cup(4, \infty)$ and $f^{\prime}<0$ on $(-1,4)$.
(a) f is increasing on $(-\infty,-1) \cup(4, \infty)$ and decreasing on $(-1,4)$.
(b) f has a local maximum at $x=-1$ with value $f(-1)=2(-1)^{3}-9(-1)^{2}-24(-1)=$ 13. f has a local minimum at $x=4$ with value $f(4)=2(4)^{3}-9(4)^{2}-24(4)=-112$. $f^{\prime \prime}(x)=12 x-18$. Let $f^{\prime \prime}=0$. We have

$$
\begin{aligned}
12 x-18 & =0 \\
x & =\frac{3}{2} .
\end{aligned}
$$

Since $f^{\prime \prime}(0)=-18$ and $f^{\prime \prime}(2)=6, f^{\prime \prime}<0$ on $\left(-\infty, \frac{3}{2}\right)$ and $f^{\prime \prime}>0$ on $\left(\frac{3}{2}, \infty\right) . f$ has an inflection point at $x=\frac{3}{2}$ and $y=2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}-24\left(\frac{3}{2}\right)=-\frac{99}{2}$.

