MATH 1101Y 2009 Quiz 7 (a)

1. Let $f(x)=2 x^{3}-3 x^{2}-12 x$.
(a) (2 pts) Find the intervals of increase or decrease.
(b) (1 pts) Find the local maximum and minimum values.
(c) (2 pts) Find the intervals of concavity and the inflection points.

Solution: $f^{\prime}(x)=6 x^{2}-6 x-12$.
Let $f^{\prime}(x)=0$. We have

$$
\begin{array}{r}
6 x^{2}-6 x-12=0 \\
x^{2}-x-2=0 \\
(x+1)(x-2)=0
\end{array}
$$

$f^{\prime}=0$ when $x=-1$ or $x=2$.
Since

$$
\begin{aligned}
f^{\prime}(-2)= & 6(-2)^{2}-6(-2)-12 \\
= & 24, \\
& f^{\prime}(0)=-12,
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime}(3) & =6(3)^{2}-6(3)-12 \\
& =24
\end{aligned}
$$

$f^{\prime}>0$ on $(-\infty,-1) \cup(2, \infty)$ and $f^{\prime}<0$ on $(-1,2)$.
(a) f is increasing on $(-\infty,-1) \cup(2, \infty)$ and decreasing on $(-1,2)$.
(b) f has a local maximum at $x=-1$ with value $f(-1)=2(-1)^{3}-3(-1)^{2}-12(-1)=$ 7. f has a local minimum at $x=2$ with value $f(2)=2(2)^{3}-3(2)^{2}-12(2)=-20$. $f^{\prime \prime}(x)=12 x-6$. Let $f^{\prime \prime}=0$. We have

$$
\begin{aligned}
12 x-6 & =0 \\
x & =\frac{1}{2} .
\end{aligned}
$$

Since $f^{\prime \prime}(0)=-6$ and $f^{\prime \prime}(1)=6, f^{\prime \prime}<0$ on $\left(-\infty, \frac{1}{2}\right)$ and $f^{\prime \prime}>0$ on $\left(\frac{1}{2}, \infty\right) . f$ has an inflection point at $x=\frac{1}{2}$ and $y=2\left(\frac{1}{2}\right)^{3}-3\left(\frac{1}{2}\right)^{2}-12\left(\frac{1}{2}\right)=-\frac{13}{2}$.

