MATH 1101Y 2009 Quiz 6 (a)

1. (3 pts) Car A is traveling west at $40 \mathrm{~km} / \mathrm{h}$ and car B istraveling north at $50 \mathrm{~km} / \mathrm{h}$. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.6 km and car B is 0.4 km from the intersection?

Solution:

Let the distance from car A to the intersection be x, the distance from car B to the intersection be y. Let the distance between the two cars be D. We are given that $\frac{d x}{d t}=40, \frac{d y}{d t}=50$. Since $D=\sqrt{x^{2}+y^{2}}$,

$$
\begin{aligned}
\frac{d D}{d t} & =\frac{2 x \frac{d x}{d t}+2 y \frac{d y}{d t}}{2 \sqrt{x^{2}+y^{2}}} \\
& =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{0.6 \cdot 40+0.4 \cdot 50}{\sqrt{0.6^{2}+0.4^{2}}} \\
& \approx 61.017
\end{aligned}
$$

when $x=0.6$ and $y=0.4$.
2. (2 pts) Find the derivative of $f(x)=\cosh (1+\ln 2 x)$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\sinh (1+\ln 2 x) \cdot \frac{1}{2 x} \cdot 2 \\
& =\frac{\sinh (1+\ln 2 x)}{x}
\end{aligned}
$$

