1. (3 pts) Two cars start moving from the same point. Car A travels north at $60 \mathrm{~km} / \mathrm{h}$ and car B travels east at $40 \mathrm{~km} / \mathrm{h}$. At what rate is the distance between the cars increasing two hours later?
Solution:

Let the distance car B travels be x and the distance car A travels be y. Let the distance between cars A and B be D. We are given that $\frac{d x}{d t}=40, \frac{d y}{d t}=60$. Since $D=\sqrt{x^{2}+y^{2}}$ and $x=80, y=120$ two hours later, we have

$$
\begin{aligned}
\frac{d D}{d t} & =\frac{2 x \frac{d x}{d t}+2 y \frac{d y}{d t}}{2 \sqrt{x^{2}+y^{2}}} \\
& =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{80 \cdot 40+120 \cdot 60}{\sqrt{80^{2}+120^{2}}} \\
& =20 \sqrt{13}
\end{aligned}
$$

The distance is changing at $20 \sqrt{13} \approx 72.11 \mathrm{~km} / \mathrm{h}$ two hours later.
2. (2 pts) Find the derivative of $f(x)=\sinh \left(1+e^{3 x}\right)$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\cosh \left(1+e^{3 x}\right) \cdot e^{3 x} \cdot 3 \\
& =3 e^{3 x} \cosh \left(1+e^{3 x}\right) .
\end{aligned}
$$

