1. (2 pts) Let

$$
f(x)=\left\{\begin{array}{cc}
2^{x} & \text { if } x<1 \\
\frac{x+2}{x} & \text { if } 1 \leq x<2 \\
\sqrt{x+2} & \text { if } x \geq 2
\end{array}\right.
$$

Find the number at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither?
Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} 2^{x}=2 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} \frac{x+2}{x}=3
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 1} f(x)$ does not exist and f is discontinuous at 1 . Since $\lim _{x \rightarrow 1^{+}} f(x)=$ $f(1), f$ is continuous from the right at 1 .

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \frac{x+2}{x}=2 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} \sqrt{x+2}=2
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 2}=2=f(2) . f$ is continuous at 2 .
2. (3 pts) Use the definition of derivative to find the derivative of $f(x)=\sqrt{x+3}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h+3}-\sqrt{x+3})(\sqrt{x+h+3}+\sqrt{x+3})}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h+3})^{2}-(\sqrt{x+3})^{2}}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+3)-(x+3)}{h(\sqrt{x+h+3}+\sqrt{x+3})}=\lim _{h \rightarrow 0} \frac{1}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+3}+\sqrt{x+3}}=\frac{1}{2 \sqrt{x+3}} .
\end{aligned}
$$

