1. (2 pts) Let

$$
f(x)=\left\{\begin{array}{cc}
1+x^{2} & \text { if } x<1 \\
\sqrt{x+3} & \text { if } 1 \leq x<6 \\
\frac{x+1}{2} & \text { if } x \geq 6
\end{array}\right.
$$

Find the number at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither?
Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} 1+x^{2}=2 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} \sqrt{x+3}=2
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 1} f(x)=2=f(2) . f(x)$ is continuous at 2 .

$$
\begin{aligned}
\lim _{x \rightarrow 6^{-}} f(x) & =\lim _{x \rightarrow 6^{-}} \sqrt{x+3}=3 \\
\lim _{x \rightarrow 6^{+}} f(x) & =\lim _{x \rightarrow 6^{+}} \frac{x+1}{2}=\frac{7}{2}
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 6} f(x)$ does not exist. $f(x)$ is discontinuous at 6 . Since $\lim _{x \rightarrow 6^{+}} f(x)=$ $f(6), f$ is continuous from the right at 6 .
2. (3 pts) Use the definition of derivative to find the derivative of $f(x)=\frac{x+2}{x+3}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h+2}{x+h+3}-\frac{x+2}{x+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(x+h+2)(x+3)-(x+2)(x+h+3)}{(x+h+3)(x+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3 h+5 x+h x+x^{2}+6\right)-\left(2 h+5 x+h x+x^{2}+6\right)}{(x+h+3)(x+3) h} \\
& =\lim _{h \rightarrow 0} \frac{h}{(x+h+3)(x+3) h}=\lim _{h \rightarrow 0} \frac{1}{(x+h+3)(x+3)} \\
& =\frac{1}{(x+3)^{2}} .
\end{aligned}
$$

