MATH 1101Y 2009 Quiz 18 (a)

1. (1 pts) Determine whether the sequence converges or diverges. If it converges, find the limit.

$$
a_{n}=\frac{4^{n+3}}{5^{n}}
$$

Solution:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{4^{n+3}}{5^{n}} & =\lim _{n \rightarrow \infty} 4^{4^{4^{n}}} \\
& =\lim _{n \rightarrow \infty} 4^{3}\left(\frac{4}{5}\right)^{n}=0
\end{aligned}
$$

The sequence converge. The limit is 0 .
2. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) (1 pts)

$$
\sum_{k=1}^{\infty} \frac{k}{2 k+1}
$$

Solution: Since

$$
\lim _{k \rightarrow \infty} \frac{k}{2 k+1}=\frac{1}{2} \neq 0
$$

the series is convergent by the Divergence Test.
(b) (1 pts)

$$
\sum_{n=1}^{\infty} \frac{1}{3 n}
$$

Solution: We have

$$
\sum_{n=1}^{\infty} \frac{1}{3 n}=\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}
$$

The series is divergent since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
(c) $(2 \mathrm{pts})$

$$
\sum_{n=1}^{\infty} \frac{3^{n}-1}{5^{n}}
$$

Solution:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{3^{n}-1}{5^{n}} & =\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}}-\sum_{n=1}^{\infty} \frac{1}{5^{n}} \\
& =\sum_{n=1}^{\infty}\left(\frac{3}{5}\right)^{n}-\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n}
\end{aligned}
$$

The series is convergent since both geometric series have $r<1\left(r=\frac{3}{5}\right.$ and $\left.\frac{1}{5}\right)$ respectively. The sum is

$$
\begin{aligned}
\frac{\frac{3}{5}}{1-\frac{3}{5}}-\frac{\frac{1}{5}}{1-\frac{1}{5}} & =\frac{\frac{3}{5}}{\frac{2}{5}}-\frac{\frac{1}{5}}{\frac{4}{5}} \\
& =\frac{3}{2}-\frac{1}{4}=\frac{5}{4} .
\end{aligned}
$$

