MATH 1101Y 2009 Quiz 17 (b)

1. (1 pts) Identify the curve by finding a Cartesian equation for the curve

$$
r=6 \cos \theta-\sin \theta
$$

Solution:

$$
\begin{aligned}
r^{2} & =6 r \cos \theta-r \sin \theta \\
x^{2}+y^{2} & =6 x-y \\
x^{2}-6 x+y^{2}+y & =0 \\
x^{2}-6 x+9+y^{2}+y+\left(\frac{1}{2}\right)^{2} & =9+\frac{1}{4}=\frac{37}{4} \\
(x-3)^{2}+\left(y+\frac{1}{2}\right)^{2} & =\frac{37}{4}
\end{aligned}
$$

The curve is a circle with center $\left(3,-\frac{1}{2}\right)$ and radius $\sqrt{\frac{37}{4}}$.
2. (2 pts) Find the (x, y)-coordinates of the points on the curve $r=5 \sin \theta$ where the tangent line is horizontal or vertical.
Solution:

$$
\begin{aligned}
& \frac{d y}{d \theta}=10 \sin \theta \cos \theta \\
& \frac{d x}{d \theta}=5(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)
\end{aligned}
$$

$\frac{d y}{d \theta}=0$ when $\theta=0, \pi, \pm \frac{\pi}{2} \cdot \frac{d x}{d \theta}=0$ when $\tan \theta= \pm 1, \theta= \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}$.
3. (2 pts) Set up an integral that represents the area of the region that is inside $r=2 \sin \theta$ and outside $r=1$. Do not evaluate this integral.

Solution:

We let

$$
\begin{aligned}
2 \sin \theta & =1 \\
\sin \theta & =\frac{1}{2}
\end{aligned}
$$

Therefore, $\theta=\frac{\pi}{6}$ or $\theta=\frac{5 \pi}{6}$ and between $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}, 2 \sin \theta>1$, the area is

$$
A=\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}\left((2 \sin \theta)^{2}-1\right) d \theta
$$

