MATH 1101Y 2009 Quiz 17 (a)

1. (1 pts) Identify the curve by finding a Cartesian equation for the curve

$$
r=2 \cos \theta-4 \sin \theta
$$

Solution: We have

$$
\begin{aligned}
& r^{2}=2 r \cos \theta-4 r \sin \theta \\
& x^{2}+y^{2}=2 x-4 y \\
& x^{2}-2 x+y^{2}+4 y=0 \\
& x^{2}-2 x+1+y^{2}+4 y+4=5
\end{aligned}
$$

The Cartesian equation for the curve is

$$
(x-1)^{2}+(y+2)^{2}=(\sqrt{5})^{2}
$$

The curve represents a circle with centre at $(1,-2)$ and radius $\sqrt{5}$.
2. (2 pts) Find the (x, y)-coordinates of the points on the curve $r=3 \cos \theta$ where the tangent line is horizontal or vertical.
Solution: Since

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}},
$$

and $y=r \sin \theta, x=r \cos \theta$, we have

$$
\begin{aligned}
\frac{d y}{d \theta} & =(3 \cos \theta \sin \theta)^{\prime} \\
& =-3 \sin ^{2} \theta+3 \cos ^{2} \theta \\
\frac{d y}{d \theta} & =0 \Leftrightarrow-3 \sin ^{2} \theta+3 \cos ^{2} \theta=0 \\
\Leftrightarrow & \sin ^{2} \theta=\cos ^{2} \theta \\
\Leftrightarrow & (\tan \theta)^{2}=1 \Leftrightarrow \tan \theta= \pm 1
\end{aligned}
$$

Therefore, $\frac{d y}{d \theta}=0$ when $\theta= \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}$. Similarly, we have

$$
\begin{gathered}
\frac{d x}{d \theta}=\left(3 \cos ^{2} \theta\right)^{\prime} \\
=-6 \cos \theta \sin \theta \\
\frac{d x}{d \theta}=0 \Leftrightarrow-6 \cos \theta \sin \theta \\
\Leftrightarrow
\end{gathered}
$$

Therefore, $\frac{d x}{d \theta}=0$ when $\theta=0, \pi, \pm \frac{\pi}{2}$.
The curve has a horizontal tangent line at $\left(\frac{3}{2}, \frac{3}{2}\right)$ and $\left(\frac{3}{2},-\frac{3}{2}\right)$; a vertical tangent line at $(3,0)$ and $(0,0)$.
3. (2 pts) Set up an integral that represents the area of the region that is inside both $r=2 \cos \theta$ and $r=1$. Do not evaluate this integral.

Solution:

First we find where these two curves meet.

$$
\begin{aligned}
2 \cos \theta & =1 \\
\cos \theta & =\frac{1}{2} \\
\theta= & \pm \frac{\pi}{3}
\end{aligned}
$$

Since the region is symmetric about the x-axis, we will calculate the area of one quater of it then multiply it by 2 .

$$
A=2\left(\int_{0}^{\frac{\pi}{3}} \frac{1}{2}(1)^{2} d \theta+\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{2}(2 \cos \theta)^{2} d \theta\right)
$$

