MATH 1101Y 2009 Quiz 15 (b)

1. (3 pts) Find the length of the curve $y=3+2 x^{\frac{3}{2}}, 0 \leq x \leq 1$.

Solution: Since

$$
y^{\prime}=2 \cdot \frac{3}{2} x^{\frac{1}{2}}=3 \sqrt{x}
$$

we have the length of the curve

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+(3 \sqrt{x})^{2}} d x=\int_{0}^{1} \sqrt{1+9 x} d x
\end{aligned}
$$

Let $u=1+9 x . d u=9 d x . x=0 \rightarrow u=1 . x=1 \rightarrow u=10$.

$$
\begin{aligned}
L & =\int_{1}^{10} \sqrt{u} \frac{1}{9} d u \\
& =\frac{1}{9}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{10}=\frac{2}{27}\left(10^{\frac{3}{2}}-1\right)
\end{aligned}
$$

2. (2 pts) Set up, but do not evaluate, an integral for the area of the surface obtained by rotating the curve $y=\ln (x+3), 0 \leq x \leq 1$, about (a) the x-axis and (b) the y-axis.

Solution:

(a)

$$
\begin{aligned}
A & =\int_{0}^{1} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} \ln (x+3) \sqrt{1+\left(\frac{1}{x+3}\right)^{2}} d x
\end{aligned}
$$

(b)

$$
\begin{aligned}
A & =\int_{0}^{1} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} x \sqrt{1+\left(\frac{1}{x+3}\right)^{2}} d x
\end{aligned}
$$

