MATH 1101Y 2009 Quiz 15 (a)

1. (3 pts) Find the length of the curve $y^{2}=(2 x+1)^{3}, 0 \leq x \leq 2$.

Solution: Since

$$
\begin{gathered}
y=(2 x+1)^{\frac{3}{2}} \\
\frac{d}{d x}\left((2 x+1)^{\frac{3}{2}}\right)
\end{gathered}
$$

we have

$$
\begin{aligned}
y^{\prime} & =\frac{3}{2}(2 x+1)^{\frac{1}{2}}\left(\frac{1}{2}\right) \\
& =3(2 x+1)^{\frac{1}{2}} .
\end{aligned}
$$

The length of the curve is

$$
\begin{aligned}
L & =\int_{0}^{2} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{2} \sqrt{1+9(2 x+1)} d x \\
& =\int_{0}^{2} \sqrt{18 x+10} d x=\int_{0}^{2} \sqrt{18 x+10} d x
\end{aligned}
$$

Let $u=18 x+10 . d u=18 d x . x=0 \rightarrow u=10 . x=2 \rightarrow u=46$.

$$
\begin{aligned}
L & =\int_{10}^{46} \sqrt{u} \frac{1}{18} d u=\frac{1}{36}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{10}^{46} \\
& =\frac{1}{54}\left((46)^{\frac{3}{2}}-(10)^{\frac{3}{2}}\right)
\end{aligned}
$$

2. (2 pts) Set up, but do not evaluate, an integral for the area of the surface obtained by rotating the curve $y=e^{x}, 0 \leq x \leq 1$, about (a) the x-axis and (b) the y-axis.
Solution:
(a)

$$
\begin{aligned}
A & =\int_{0}^{1} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{1} 2 \pi e^{x} \sqrt{1+e^{2 x}} d x
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{1} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
= & \int_{0}^{1} 2 \pi x \sqrt{1+e^{2 x}} d x
\end{aligned}
$$

