MATH 1101Y 2009 Quiz 11 (b)

1. (2 pts) Find the area of the region enclosed by the curves $y=-x^{2}+3 x+2$ and $y=2 x$.

Solution: We first find the intersection of these curves. Let

$$
\begin{aligned}
-x^{2}+3 x+2 & =2 x \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x=-1 \text { or } x & =2 .
\end{aligned}
$$

Let $x=0 .-x^{2}+3 x+2=2$ and $2 x=0$. The curve $-x^{2}+3 x+2$ is on top. The area is

$$
\begin{aligned}
& \int_{-1}^{2}\left(-x^{2}+3 x+2-2 x\right) d x \\
= & \int_{-1}^{2}\left(-x^{2}+x+2\right) d x \\
= & {\left[-\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x\right]_{-1}^{2} } \\
= & \left(-\frac{2^{3}}{3}+\frac{2^{2}}{2}+2 \cdot 2\right)-\left(-\frac{(-1)^{3}}{3}+\frac{(-1)^{2}}{2}+2(-1)\right) \\
= & \frac{9}{2} .
\end{aligned}
$$

2. (3 pts) Use the method of cylindrical shells to find the volume generated by rotating the regoin bounded by the curves $y=\frac{1}{1+(x-2)^{2}}, y=0, x=1$ and $x=3$ about the y-axis.
Solution: Using the method of cylindrical shells, we have

$$
V=\int_{1}^{3} 2 \pi x \frac{1}{1+(x-2)^{2}} d x
$$

(Let $u=x-2, x=u+2, d u=d x, x=3 \rightarrow u=1, x=1 \rightarrow u=-1$.)

$$
\begin{aligned}
& =2 \pi \int_{-1}^{1} \frac{u+2}{1+u^{2}} d u \\
& =2 \pi \int_{-1}^{1} \frac{u}{1+u^{2}} d u+2 \pi \int_{-1}^{1} \frac{2}{1+u^{2}} d u
\end{aligned}
$$

(Let $v=1+u^{2} . d v=2 u d u . u=-1 \rightarrow v=2 . u=1 \rightarrow v=2$.)

$$
\begin{aligned}
& =\pi \int_{2}^{2} \frac{d v}{v}+4 \pi\left[\tan ^{-1} u\right]_{-1}^{1} \\
& =0+4 \pi\left(\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right) \\
& =2 \pi^{2}
\end{aligned}
$$

