MATH 1101Y 2009 Quiz 11 (a)

1. (2 pts) Find the area of the region enclosed by the curves $y=x^{2}-x$ and $y=3 x$. Solution: First we find the intersections of these two curves. We let

$$
\begin{gathered}
x^{2}-x=3 x \\
x^{2}-4 x=0 \\
x(x-4)=0 \\
x=0 \text { or } x=4
\end{gathered}
$$

Let $x=2 . x^{2}-x=2$ and $3 x=6$. The curve $y=3 x$ is on top. We have

$$
\begin{aligned}
A & =\int_{0}^{4}\left(3 x-\left(x^{2}-x\right)\right) d x \\
& =\int_{0}^{4}\left(4 x-x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4}=32-\frac{64}{3} \\
& =\frac{32}{3}
\end{aligned}
$$

2. (3 pts) Use the method of cylindrical shells to find the volume generated by rotating the regoin bounded by the curves $y=2-(x-2)^{2}$ and $y=1$ about the y-axis.
Solution: To find the intersections of these two curves, we let

$$
\begin{gathered}
2-(x-2)^{2}=1 \\
(x-2)^{2}=1 \\
x=1 \text { or } x=3
\end{gathered}
$$

Let $x=2.2-(x-2)^{2}=2$. The curse $y=2-(x-2)^{2}$ is above $y=1$ for $x \in(1,3)$. Using the method of cylindrical shells we have

$$
\begin{aligned}
V & =\int_{1}^{3} 2 \pi x\left(2-(x-2)^{2}-1\right) d x \\
& =2 \pi \int_{1}^{3} x\left(-x^{2}+4 x-3\right) d x \\
& =2 \pi \int_{1}^{3}\left(-x^{3}+4 x^{2}-3 x\right) d x \\
& =2 \pi\left[-\frac{x^{4}}{4}+\frac{4}{3} x^{3}-\frac{3}{2} x^{2}\right]_{1}^{3} \\
& =\frac{16}{3} \pi
\end{aligned}
$$

