MATH 1101Y 2009 Quiz 11 (a)

1. (2 pts) Find the area of the region enclosed by the curves $y = x^2 - x$ and y = 3x. Solution: First we find the intersections of these two curves. We let

$$x^{2} - x = 3x$$

$$x^{2} - 4x = 0$$

$$x (x - 4) = 0$$

$$x = 0 \text{ or } x = 4$$

Let x = 2. $x^2 - x = 2$ and 3x = 6. The curve y = 3x is on top. We have

$$A = \int_{0}^{4} (3x - (x^{2} - x)) dx$$

=
$$\int_{0}^{4} (4x - x^{2}) dx$$

=
$$\left[2x^{2} - \frac{x^{3}}{3} \right]_{0}^{4} = 32 - \frac{64}{3}$$

=
$$\frac{32}{3}.$$

2. (3 pts) Use the method of cylindrical shells to find the volume generated by rotating the regoin bounded by the curves $y = 2 - (x - 2)^2$ and y = 1 about the y-axis. Solution: To find the intersections of these two curves, we let

$$2 - (x - 2)^{2} = 1$$

(x - 2)² = 1
x = 1 or x = 3

Let x = 2. $2 - (x - 2)^2 = 2$. The curse $y = 2 - (x - 2)^2$ is above y = 1 for $x \in (1, 3)$. Using the method of cylindrical shells we have

$$V = \int_{1}^{3} 2\pi x \left(2 - (x - 2)^{2} - 1\right) dx$$

= $2\pi \int_{1}^{3} x \left(-x^{2} + 4x - 3\right) dx$
= $2\pi \int_{1}^{3} \left(-x^{3} + 4x^{2} - 3x\right) dx$
= $2\pi \left[-\frac{x^{4}}{4} + \frac{4}{3}x^{3} - \frac{3}{2}x^{2}\right]_{1}^{3}$
= $\frac{16}{3}\pi$.

_	1
	L
	L
	L