MATH 11012009

Due January 22, 2010
5 points for each problem. Show all your work.

1. Find the limit. Use l'Hospital's Rule where appropriate.
(a)

$$
\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{\frac{1}{x}}
$$

Solution: Let $y=\left(e^{x}+x\right)^{\frac{1}{x}} \cdot \ln y=\frac{1}{x} \ln \left(e^{x}+x\right)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \ln y & =\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x}\left(\text { Note: This is in the form } \frac{\infty}{\infty} .\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}+x}\left(e^{x}+1\right)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x}\left(\text { Note: This is in the form } \frac{\infty}{\infty} .\right) \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1}\left(\text { Note: This is in the form } \frac{\infty}{\infty} .\right) \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}}=1 .
\end{aligned}
$$

Therefore

$$
\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{\ln y}=e
$$

(b)

$$
\lim _{x \rightarrow \infty}\left(\frac{2 x-3}{2 x+5}\right)^{2 x+1}
$$

Solution: Let $y=\left(\frac{2 x-3}{2 x+5}\right)^{2 x+1}$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \ln y & =\lim _{x \rightarrow \infty} \ln \left(\frac{2 x-3}{2 x+5}\right)^{2 x+1} \\
& =\lim _{x \rightarrow \infty}(2 x+1) \ln \left(\frac{2 x-3}{2 x+5}\right) \\
& \left.=\lim _{x \rightarrow \infty} \frac{\ln \left(\frac{2 x-3}{2 x+5}\right)}{\frac{1}{(2 x+1)}} \text { (Note: This is in the form } \frac{0}{0} .\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{2 x+5}{2 x-3} \frac{2(2 x+5)-2(2 x-3)}{(2 x+5)^{2}}}{\frac{-2}{(2 x+1)^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{2 x+5}{2 x-3} \frac{16}{(2 x+5)^{2}}}{\frac{-2}{(2 x+1)^{2}}} \\
& =\lim _{x \rightarrow \infty}-\frac{2 x+5}{2 x-3} \frac{16}{(2 x+5)^{2}} \frac{(2 x+1)^{2}}{2} \\
& =\lim _{x \rightarrow \infty}-\frac{8(2 x+1)^{2}}{(2 x-3)(2 x+5)}=\lim _{x \rightarrow \infty}-\frac{32 x^{2}+32 x+8}{4 x^{2}+4 x-15} \\
& =-8
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{\ln y}=e^{-8} .
$$

2. Page $247, \# 40$. A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level?

Solution:

As in the figure, we have

$$
\begin{aligned}
h & =10 \sin \theta \\
\frac{d h}{d t} & =10 \cos \theta \frac{d \theta}{d t} \\
\frac{d \theta}{d t} & =\frac{2 \pi}{2}=\pi
\end{aligned}
$$

When the seat is 16 m above ground level,

$$
\begin{aligned}
h & =16-10=6 \\
\cos \theta & =\frac{\sqrt{10^{2}-6^{2}}}{10}=\frac{8}{10} \\
\frac{d h}{d t} & =10 \cos \theta \frac{d \theta}{d t} \\
& =10 \cdot \frac{8}{10} \cdot \pi \\
& =8 \pi \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

3. Page 286, \#24. Suppose that $3 \leq f^{\prime}(x) \leq 5$ for all values of x. Show that $18 \leq$ $f(8)-f(2) \leq 30$.
Proof: By the Mean Value Theorem,

$$
f(8)-f(2)=f^{\prime}(c)(8-2)=6 f^{\prime}(c)
$$

for some c in the interval $(2,8)$. Since $3 \leq f^{\prime}(x) \leq 5,18 \leq 6 f^{\prime}(c) \leq 30$. Therefore

$$
18 \leq f(8)-f(2) \leq 30
$$

4. Page 329, \#42. For a fish swimming at a speed v relative to the water, the energy expenditure per unit time is proportional to v^{3}. It is believed that migrating fish try to minimize the total energy required to swim a fixed distance. If the fish are swimming against a current $u(u<v)$, then the time required to swim a distance L is $L /(v-u)$ and the total energy E required to swim the distance is given by

$$
E(v)=a v^{3} \cdot \frac{L}{v-u}
$$

where a is the proportionality constant.
(a) Determine the value of v that minimizes E.
(b) Sketch the graph of E.

Note: This result has been verified experimentally: migrating fish swim against a current at a speed 50% greater than the current speed.
Solution: (a)

$$
\begin{aligned}
E^{\prime}(v) & =a L \frac{(v-u) 3 v^{2}-v^{3}}{(v-u)^{2}} \\
E^{\prime} & =0 \\
& \Leftrightarrow(v-u) 3 v^{2}-v^{3}=0 \\
& \Leftrightarrow 3 v^{3}-3 u v^{2}-v^{3}=0 \\
& \Leftrightarrow 2 v^{3}-3 u v^{2}=0 \\
& \Leftrightarrow v^{2}(2 v-3 u)=0
\end{aligned}
$$

The critical numbers are $v=0$ and $v=\frac{3}{2} u$. If $v<\frac{3}{2} u, 2 v-3 u<0, E^{\prime}<0$. If $v>\frac{3}{2} u$, $2 v-3 u>0, E^{\prime}>0$. By the First Derivative Test, $v=\frac{3}{2} u$ is a local minimum. Since we must have $v>u$, this also the absolute maximum.
(b)

5. Page $329, \# 46$. A woman at a point A on the shore of a circular lake with radius 2 mi wants to arrive at the point C diametrically opposite A on the other side of the lake in the shortest possible time. She can walk at the rate of $4 \mathrm{mi} / \mathrm{h}$ and row a boat at 2 mi / h. How should she proceed?

Solution:

As in the figure, we assume that she rows from A to B then walks from B to C. Let the angle $\angle B A C$ be θ. The angle $\angle B O C$ would be 2θ. The angle $\angle A B C$ is an right angle. So we have

The time she spend from A to B is $\frac{4 \cos \theta}{2}=2 \cos \theta$. (Note: The length $\overline{A B}$ can also be calculated using the Law of Cosines.) The length of the arc from B to C is $2(2 \theta)=4 \theta$. The time she will spend on this part is $\frac{4 \theta}{4}=\theta$. Therefore, the time she needs to reach C as a function of θ is

$$
T(\theta)=2 \cos \theta+\theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

Since

$$
\begin{aligned}
T^{\prime}(\theta) & =-2 \sin \theta+1 \\
T^{\prime}(\theta) & =0 \Leftrightarrow 2 \sin \theta=1 \\
& \Leftrightarrow \sin \theta=\frac{1}{2},
\end{aligned}
$$

$\theta=\frac{\pi}{6}$ is the only critical number. We compare $T(0), T\left(\frac{\pi}{6}\right)$, and $T\left(\frac{\pi}{2}\right)$.

$$
\begin{aligned}
T(0) & =2 \\
T\left(\frac{\pi}{6}\right) & =2\left(\frac{\sqrt{3}}{2}\right)+\frac{\pi}{6} \approx 2.2556 \\
T\left(\frac{\pi}{2}\right) & =2 \cdot 0+\frac{\pi}{2} \approx 1.5708
\end{aligned}
$$

Since the minimum is achieved at $\theta=\frac{\pi}{2}$, she should walk all the way. It will take 1 . 57 hours to reach C.

