
Mathematics 110 – Calculus of one variable
Trent University, 2003-2004

§A Test #1 Solutions

1. Find
dy

dx
in any three of a-e. [12 = 3 × 4 ea.]

a. y = xln
(

1
x

)
b. x2 + 2xy + y2 − x = 1 c. y = sin

(
e
√
x
)

d. y =
2x

x+ 1
e. y = cos(2t) where t = x3 + 2x

Solutions.
a. Product rule:

First, the direct approach.

dy

dx
=

d

dx
xln
(

1
x

)
=

1
1/x
· d
dx

1
x

= x · −1
x2

= − 1
x

Second, an alternative, slightly indirect, approach.

y = xln
(

1
x

)
= xln

(
x−1

)
= −xln(x)

so
dy

dx
=

d

dx
(−xln(x)) = − d

dx
ln(x) = − 1

x
�

b. The direct approach is to use implicit differentiation, plus the product and chain rules
along the way:

x2 + 2xy + y2 − x = 1 =⇒ d

dx

(
x2 + 2xy + y2 − x

)
=

d

dx
1

=⇒ d

dx
x2 +

d

dx
2xy +

d

dx
y2 − d

dx
x = 0 =⇒ 2x+ 2y + 2x

dy

dx
+ 2y

dy

dx
− 1 = 0

=⇒(2x+ 2y)
dy

dx
+ (2x+ 2y − 1) = 0 =⇒ (2x+ 2y)

dy

dx
= 1− 2x− 2y

=⇒dy

dx
=

1− 2x− 2y
2x+ 2y

=
1

2x+ 2y
− 1

An alternate approach is to solve for y first . . .

x2 + 2xy + y2 − x = 1 ⇐⇒ (x+ y)2 − x = 1 ⇐⇒ (x+ y)2 = 1 + x

⇐⇒ x+ y = ±
√

1 + x ⇐⇒ y = −x±
√

1 + x
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. . . and then take the derivative:

dy

dx
=

d

dx

(
−x±

√
1 + x

)
= −1± 1

2
√

1 + x
�

c. Chain rule, twice:

dy

dx
=

d

dx
sin
(
e
√
x
)

= cos
(
e
√
x
)
· d
dx
e
√
x

= cos
(
e
√
x
)
e
√
x · d

dx

√
x = cos

(
e
√
x
)
e
√
x 1

2
√
x

�

d. Quotient rule:

dy

dx
=

d

dx

(
2x

x+ 1

)
=

d
dx2x · (x+ 1)− 2x · ddx (x+ 1)

(x+ 1)2

=
ln(2)2x · (x+ 1)− 2x · 1

(x+ 1)2
=

2x (ln(2)(x + 1)− 1)
(x+ 1)2

�

e. Chain rule:

dy

dx
=
dy

dt
· dt
dx

=
d

dt
cos(2t) · d

dx

(
x3 + 2x

)
= − sin(2t) · d

dt
2t ·

(
3x2 + 2

)
= −2 sin(2t) ·

(
3x2 + 2

)
= −2

(
3x2 + 2

)
sin
(
2
(
x3 + 2x

))
= −

(
6x2 + 4

)
sin
(
2x3 + 4x

)
�

2. Do any two of a-c. [10 = 2 × 5 each]

a. Determine whether g(x) =

{
x−1
x2−1

x 6= 1
1
2 x = 1

is continuous at x = 1 or not.

Solution. g(x) is continuous at x = 1 if and only if lim
x→1

g(x) exists and equals g(1). Since

lim
x→1

g(x) = lim
x→1

x− 1
x2 − 1

= lim
x→1

x− 1
(x− 1)(x+ 1)

= lim
x→1

1
x+ 1

=
1

1 + 1
=

1
2

= g(1) ,

g(x) is continuous at x = 1. �

b. Use the definition of the derivative to compute f ′(1) for f(x) =
1
x

.

Solution. Plug in and run . . .

f ′(1) = lim
h→0

f(1 + h)− f(1)
h

= lim
h→0

1
1+h −

1
1

h
= lim

h→0

1−(1+h)
1+h

h

= lim
h→0

−h
1+h

h
= lim
h→0

−h
h(1 + h)

= lim
h→0

−1
1 + h

=
−1

1 + 0
= −1 �
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c. Find the equation of the tangent line to y =
√
x at x = 9.

Solution. Note that at x = 9, y =
√

9 = 3. The slope m of the tangent line is equal to
the derivative of y at x = 9.

m =
dy

dx

∣∣∣∣
x=9

=
d

dx

√
x

∣∣∣∣
x=9

=
1

2
√
x

∣∣∣∣
x=9

=
1

2
√

9
=

1
2 · 3 =

1
6

We want the equation y = mx+ b of the line with slope m = 1
6 passing through the point

(9, 3), and it remains to compute the y-intercept, b. We do this by plugging in the slope
and the coordinates of the point into the equation of the line and solving for b:

3 =
1
6
· 9 + b ⇐⇒ 3 =

3
2

+ b ⇐⇒ b = 3− 3
2

=
3
2

Thus the equation of the tangent line to y =
√
x at x = 9 is y = 1

6
x+ 3

2
. �

3. Do one of a or b. [8]

a. Use the ε− δ definition of limits to verify that lim
x→2

x2 = 4.

Solution. We need to show that for every ε > 0, there is a δ > 0 such that if x is within
δ of 2, then x2 is within ε of 4. As usual, given ε, we try to reverse-engineer the necessary
δ:

−ε < x2 − 4 < ε ⇐⇒ −ε < (x− 2)(x+ 2) < ε ⇐⇒ − ε

x+ 2
< x− 2 <

ε

x+ 2

Unfortunately, δ cannot depend on x, so we need to find a suitable bound for ε
x+2 . If we

arbitrarily decide to ensure that δ ≤ 1, then:

−δ < x− 2 < δ =⇒−1 < x− 2 < 1 =⇒ 1 < x < 3 =⇒ 3 < x+ 2 < 5

=⇒ 1
3
>

1
x+ 2

>
1
5

=⇒ ε

3
>

ε

x+ 2
>
ε

5

If we now let δ = min
(
1, ε5

)
, this will do the job:

−δ < x− 2 < δ =⇒− ε
5
< x− 2 <

ε

5
because δ ≤ ε

5
=⇒− ε

x+ 2
< x− 2 <

ε

x+ 2

because −1 ≤ δ < x− 2 < δ ≤ 1 implies that
ε

5
<

ε

x+ 2
=⇒−ε < (x− 2)(x+ 2) < ε

=⇒−ε < x2 − 4 < ε . . . as desired!

Hence lim
x→2

x2 = 4. �
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b. Use the ε−N definition of limits to verify that lim
t→∞

1
t+ 1

= 0.

Solution. We need to show that for every ε > 0, there is an N > 0 such that if x > N ,
then 1

t+1 is within ε of 0. Note that as t → ∞, we can assume that t > −1, from which
it follows that 1

t+1 − 0 > 0 > −ε. This means we only have to worry about making
1
t+1 − 0 < ε. As usual, given ε, we try to reverse-engineer the necessary N :

1
t+ 1

− 0 < ε ⇐⇒ 1
t + 1

< ε ⇐⇒ t+ 1 >
1
ε
⇐⇒ t >

1
ε
− 1

Since every step was reversible here, it follows that N =
1
ε
− 1 will do the job. Hence

lim
t→∞

1
t+ 1

= 0. �

4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical
and horizontal asymptotes of f(x) = xe−x

2
and sketch the graph of f(x) based on

this information. [10]

Solution.
i. (Domain) Since x and e−x

2
are defined and continuous for all x, it follows that f(x) =

xe−x
2

is defined and continuous for all x.
ii. (Intercepts) f(x) = xe−x

2
= 0 ⇐⇒ x = 0, because e−x

2
> 0 for all x. Thus (0, 0) is

the only x-intercept and the only y-intercept of f(x).
iii. (Local maxima and minima)

f ′(x) =
d

dx

(
xe−x

2
)

=
d

dx
x · e−x

2
+ x · d

dx
e−x

2
= 1 · e−x

2
+ x · e−x

2
· d
dx

(
−x2

)
= e−x

2
+ x · e−x2 · (−2x) =

(
1− 2x2

)
e−x

2

which is also defined for all x.
Since e−x

2
> 0 for all x,

f ′(x) = 0 ⇐⇒ 1− 2x2 = 0 ⇐⇒ x2 =
1
2
⇐⇒ x = ± 1√

2
.

We determine which of these give local maxima or minima by considering the intervals
of increase and decrease. Note that since e−x

2
> 0 for all x, f ′(x) is positive or negative

depending on whether 1− 2x2 is positive or negative.

x x < − 1√
2

x = − 1√
2

− 1√
2
< x < 1√

2
x = 1√

2
1√
2
< x

f ′(x) < 0 0 > 0 0 < 0
f(x) decreasing local min increasing local max decreasing

Thus f
(
− 1√

2

)
= − 1√

2
e−1/2 and f

(
1√
2

)
= 1√

2
e−1/2 are, respectively, local minimum

and local maximum points of f(x).
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iv. (Points of inflection and curvature)

f ′′(x) =
d

dx
f ′(x) =

d

dx

[(
1− 2x2

)
e−x

2
]

=
d

dx

(
1− 2x2

)
· e−x2

+
(
1− 2x2

)
· d
dx
e−x

2

= −4xe−x
2

+
(
1− 2x2

)
e−x

2 d

dx

(
−x2

)
= −4xe−x

2
+
(
1− 2x2

)
e−x

2
(−2x)

=
(
−4x− 2x+ 4x3

)
e−x

2
=
(
4x3 − 6x

)
e−x

2
= 2x

(
2x2 − 3

)
e−x

2

which is also defined for all x.
Since e−x

2
> 0 for all x, f ′′(x) = 0 if x = 0 or x = ±

√
3
2 . To sort out the

inflection points and intervals of curvature, we check where f ′′(x) is positive and
where it is negative. Again, e−x

2
> 0 for all x, so f ′′(x) is positive or negative

depending on whether 2x
(
2x2 − 3

)
is positive or negative

x x < −
√

3
2

x = −
√

3
2
−
√

3
2
< x < 0 x = 0 0 < x <

√
3
2

x =
√

3
2

x >
√

3
2

f ′′(x) < 0 0 > 0 0 < 0 0 > 0
f(x) conc. down infl. pt. conc. up infl. pt. conc. down infl. pt. conc. up

Thus f
(
−
√

3
2

)
= −

√
3
2e
−3/2, f(0) = 0, and f

(√
3
2

)
=
√

3
2e
−3/2 are the inflection

points of f(x).
v. (Vertical asymptotes) f(x) has no vertical asymptotes because it is defined and con-

tinuous for all x.
vi. (Horizontal asymptotes) f(x) = xe−x

2
= x

ex2 and, since x→±∞ and ex
2 → infty as

x→ ±∞, we can use l’Hôpital’s Rule in the relevant limits.

lim
x→+∞

x

ex
2 = lim

x→+∞

1
2xex2 = 0

lim
x→−∞

x

ex2 = lim
x→−∞

1
2xex2 = 0

Thus f(x) has a horizontal asymptote at y = 0 in both directions.
vii. (The graph!) Typing plot(x*exp(-x*x),x=-5..5); into Maple gives:

Whew! �
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