Mathematics 110 - Calculus of one variable

Trent University, 2003-2004

§A Test \#1 Solutions

1. Find $\frac{d y}{d x}$ in any three of a-e. $\quad[12=3 \times 4 e a$.
a. $y=x \ln \left(\frac{1}{x}\right)$
b. $x^{2}+2 x y+y^{2}-x=1$
c. $y=\sin \left(e^{\sqrt{x}}\right)$
d. $y=\frac{2^{x}}{x+1}$
e. $y=\cos (2 t)$ where $t=x^{3}+2 x$

Solutions.

a. Product rule:

First, the direct approach.

$$
\frac{d y}{d x}=\frac{d}{d x} x \ln \left(\frac{1}{x}\right)=\frac{1}{1 / x} \cdot \frac{d}{d x} \frac{1}{x}=x \cdot \frac{-1}{x^{2}}=-\frac{1}{x}
$$

Second, an alternative, slightly indirect, approach.

$$
y=x \ln \left(\frac{1}{x}\right)=x \ln \left(x^{-1}\right)=-x \ln (x)
$$

so

$$
\frac{d y}{d x}=\frac{d}{d x}(-x \ln (x))=-\frac{d}{d x} \ln (x)=-\frac{1}{x}
$$

b. The direct approach is to use implicit differentiation, plus the product and chain rules along the way:

$$
\begin{aligned}
& x^{2}+2 x y+y^{2}-x=1 \Longrightarrow \frac{d}{d x}\left(x^{2}+2 x y+y^{2}-x\right)=\frac{d}{d x} 1 \\
\Longrightarrow & \frac{d}{d x} x^{2}+\frac{d}{d x} 2 x y+\frac{d}{d x} y^{2}-\frac{d}{d x} x=0 \Longrightarrow 2 x+2 y+2 x \frac{d y}{d x}+2 y \frac{d y}{d x}-1=0 \\
\Longrightarrow & (2 x+2 y) \frac{d y}{d x}+(2 x+2 y-1)=0 \Longrightarrow(2 x+2 y) \frac{d y}{d x}=1-2 x-2 y \\
\Longrightarrow & \frac{d y}{d x}=\frac{1-2 x-2 y}{2 x+2 y}=\frac{1}{2 x+2 y}-1
\end{aligned}
$$

An alternate approach is to solve for y first ...

$$
\begin{aligned}
& x^{2}+2 x y+y^{2}-x=1 \Longleftrightarrow(x+y)^{2}-x=1 \\
& \Longleftrightarrow x+y= \pm \sqrt{1+x} \Longleftrightarrow(x+y)^{2}=1+x \\
& \Longleftrightarrow y=-x \pm \sqrt{1+x}
\end{aligned}
$$

... and then take the derivative:

$$
\frac{d y}{d x}=\frac{d}{d x}(-x \pm \sqrt{1+x})=-1 \pm \frac{1}{2 \sqrt{1+x}}
$$

c. Chain rule, twice:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sin \left(e^{\sqrt{x}}\right)=\cos \left(e^{\sqrt{x}}\right) \cdot \frac{d}{d x} e^{\sqrt{x}} \\
& =\cos \left(e^{\sqrt{x}}\right) e^{\sqrt{x}} \cdot \frac{d}{d x} \sqrt{x}=\cos \left(e^{\sqrt{x}}\right) e^{\sqrt{x}} \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

d. Quotient rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{2^{x}}{x+1}\right)=\frac{\frac{d}{d x} 2^{x} \cdot(x+1)-2^{x} \cdot \frac{d}{d x}(x+1)}{(x+1)^{2}} \\
& =\frac{\ln (2) 2^{x} \cdot(x+1)-2^{x} \cdot 1}{(x+1)^{2}}=\frac{2^{x}(\ln (2)(x+1)-1)}{(x+1)^{2}}
\end{aligned}
$$

e. Chain rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{d}{d t} \cos (2 t) \cdot \frac{d}{d x}\left(x^{3}+2 x\right)=-\sin (2 t) \cdot \frac{d}{d t} 2 t \cdot\left(3 x^{2}+2\right) \\
& =-2 \sin (2 t) \cdot\left(3 x^{2}+2\right)=-2\left(3 x^{2}+2\right) \sin \left(2\left(x^{3}+2 x\right)\right) \\
& =-\left(6 x^{2}+4\right) \sin \left(2 x^{3}+4 x\right)
\end{aligned}
$$

2. Do any two of a-c. $[10=2 \times 5$ each $]$
a. Determine whether $g(x)=\left\{\begin{array}{ll}\frac{x-1}{x^{2}-1} & x \neq 1 \\ \frac{1}{2} & x=1\end{array}\right.$ is continuous at $x=1$ or not.

Solution. $g(x)$ is continuous at $x=1$ if and only if $\lim _{x \rightarrow 1} g(x)$ exists and equals $g(1)$. Since

$$
\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{1+1}=\frac{1}{2}=g(1),
$$

$g(x)$ is continuous at $x=1$.
b. Use the definition of the derivative to compute $f^{\prime}(1)$ for $f(x)=\frac{1}{x}$.

Solution. Plug in and run...

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-\frac{1}{1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{1-(1+h)}{1+h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{1+h}}{h}=\lim _{h \rightarrow 0} \frac{-h}{h(1+h)}=\lim _{h \rightarrow 0} \frac{-1}{1+h}=\frac{-1}{1+0}=-1
\end{aligned}
$$

c. Find the equation of the tangent line to $y=\sqrt{x}$ at $x=9$.

Solution. Note that at $x=9, y=\sqrt{9}=3$. The slope m of the tangent line is equal to the derivative of y at $x=9$.

$$
m=\left.\frac{d y}{d x}\right|_{x=9}=\left.\frac{d}{d x} \sqrt{x}\right|_{x=9}=\left.\frac{1}{2 \sqrt{x}}\right|_{x=9}=\frac{1}{2 \sqrt{9}}=\frac{1}{2 \cdot 3}=\frac{1}{6}
$$

We want the equation $y=m x+b$ of the line with slope $m=\frac{1}{6}$ passing through the point $(9,3)$, and it remains to compute the y-intercept, b. We do this by plugging in the slope and the coordinates of the point into the equation of the line and solving for b :

$$
3=\frac{1}{6} \cdot 9+b \Longleftrightarrow 3=\frac{3}{2}+b \Longleftrightarrow b=3-\frac{3}{2}=\frac{3}{2}
$$

Thus the equation of the tangent line to $y=\sqrt{x}$ at $x=9$ is $y=\frac{1}{6} x+\frac{3}{2}$.
3. Do one of \mathbf{a} or \mathbf{b}. [8]
a. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2} x^{2}=4$.

Solution. We need to show that for every $\varepsilon>0$, there is a $\delta>0$ such that if x is within δ of 2 , then x^{2} is within ε of 4 . As usual, given ε, we try to reverse-engineer the necessary δ :

$$
-\varepsilon<x^{2}-4<\varepsilon \Longleftrightarrow-\varepsilon<(x-2)(x+2)<\varepsilon \Longleftrightarrow-\frac{\varepsilon}{x+2}<x-2<\frac{\varepsilon}{x+2}
$$

Unfortunately, δ cannot depend on x, so we need to find a suitable bound for $\frac{\varepsilon}{x+2}$. If we arbitrarily decide to ensure that $\delta \leq 1$, then:

$$
\begin{aligned}
-\delta<x-2<\delta & \Longrightarrow-1<x-2<1 \Longrightarrow 1<x<3 \Longrightarrow 3<x+2<5 \\
& \Longrightarrow \frac{1}{3}>\frac{1}{x+2}>\frac{1}{5} \Longrightarrow \frac{\varepsilon}{3}>\frac{\varepsilon}{x+2}>\frac{\varepsilon}{5}
\end{aligned}
$$

If we now let $\delta=\min \left(1, \frac{\varepsilon}{5}\right)$, this will do the job:

$$
\begin{aligned}
-\delta<x-2<\delta \Longrightarrow & -\frac{\varepsilon}{5}<x-2<\frac{\varepsilon}{5} \quad \text { because } \delta \leq \frac{\varepsilon}{5} \\
\Longrightarrow & -\frac{\varepsilon}{x+2}<x-2<\frac{\varepsilon}{x+2} \\
& \text { because }-1 \leq \delta<x-2<\delta \leq 1 \text { implies that } \frac{\varepsilon}{5}<\frac{\varepsilon}{x+2} \\
\Longrightarrow & -\varepsilon<(x-2)(x+2)<\varepsilon \\
\Longrightarrow & -\varepsilon<x^{2}-4<\varepsilon \quad \ldots \text { as desired! }
\end{aligned}
$$

Hence $\lim _{x \rightarrow 2} x^{2}=4$.
b. Use the $\varepsilon-N$ definition of limits to verify that $\lim _{t \rightarrow \infty} \frac{1}{t+1}=0$.

Solution. We need to show that for every $\varepsilon>0$, there is an $N>0$ such that if $x>N$, then $\frac{1}{t+1}$ is within ε of 0 . Note that as $t \rightarrow \infty$, we can assume that $t>-1$, from which it follows that $\frac{1}{t+1}-0>0>-\varepsilon$. This means we only have to worry about making $\frac{1}{t+1}-0<\varepsilon$. As usual, given ε, we try to reverse-engineer the necessary N :

$$
\frac{1}{t+1}-0<\varepsilon \Longleftrightarrow \frac{1}{t+1}<\varepsilon \Longleftrightarrow t+1>\frac{1}{\varepsilon} \Longleftrightarrow t>\frac{1}{\varepsilon}-1
$$

Since every step was reversible here, it follows that $N=\frac{1}{\varepsilon}-1$ will do the job. Hence $\lim _{t \rightarrow \infty} \frac{1}{t+1}=0$.
4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical and horizontal asymptotes of $f(x)=x e^{-x^{2}}$ and sketch the graph of $f(x)$ based on this information. [10]

Solution.

i. (Domain) Since x and $e^{-x^{2}}$ are defined and continuous for all x, it follows that $f(x)=$ $x e^{-x^{2}}$ is defined and continuous for all x.
ii. (Intercepts) $f(x)=x e^{-x^{2}}=0 \Longleftrightarrow x=0$, because $e^{-x^{2}}>0$ for all x. Thus $(0,0)$ is the only x-intercept and the only y-intercept of $f(x)$.
iii. (Local maxima and minima)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x e^{-x^{2}}\right)=\frac{d}{d x} x \cdot e^{-x^{2}}+x \cdot \frac{d}{d x} e^{-x^{2}}=1 \cdot e^{-x^{2}}+x \cdot e^{-x^{2}} \cdot \frac{d}{d x}\left(-x^{2}\right) \\
& =e^{-x^{2}}+x \cdot e^{-x^{2}} \cdot(-2 x)=\left(1-2 x^{2}\right) e^{-x^{2}}
\end{aligned}
$$

which is also defined for all x.
Since $e^{-x^{2}}>0$ for all x,

$$
f^{\prime}(x)=0 \Longleftrightarrow 1-2 x^{2}=0 \Longleftrightarrow x^{2}=\frac{1}{2} \Longleftrightarrow x= \pm \frac{1}{\sqrt{2}} .
$$

We determine which of these give local maxima or minima by considering the intervals of increase and decrease. Note that since $e^{-x^{2}}>0$ for all $x, f^{\prime}(x)$ is positive or negative depending on whether $1-2 x^{2}$ is positive or negative.

x	$x<-\frac{1}{\sqrt{2}}$	$x=-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$	$x=\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}<x$
$f^{\prime}(x)$	<0	0	>0	0	<0
$f(x)$	decreasing	local min	increasing	local max	decreasing

Thus $f\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}} e^{-1 / 2}$ and $f\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}} e^{-1 / 2}$ are, respectively, local minimum and local maximum points of $f(x)$.
iv. (Points of inflection and curvature)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left[\left(1-2 x^{2}\right) e^{-x^{2}}\right]=\frac{d}{d x}\left(1-2 x^{2}\right) \cdot e^{-x^{2}}+\left(1-2 x^{2}\right) \cdot \frac{d}{d x} e^{-x^{2}} \\
& =-4 x e^{-x^{2}}+\left(1-2 x^{2}\right) e^{-x^{2}} \frac{d}{d x}\left(-x^{2}\right)=-4 x e^{-x^{2}}+\left(1-2 x^{2}\right) e^{-x^{2}}(-2 x) \\
& =\left(-4 x-2 x+4 x^{3}\right) e^{-x^{2}}=\left(4 x^{3}-6 x\right) e^{-x^{2}}=2 x\left(2 x^{2}-3\right) e^{-x^{2}}
\end{aligned}
$$

which is also defined for all x.
Since $e^{-x^{2}}>0$ for all $x, f^{\prime \prime}(x)=0$ if $x=0$ or $x= \pm \sqrt{\frac{3}{2}}$. To sort out the inflection points and intervals of curvature, we check where $f^{\prime \prime}(x)$ is positive and where it is negative. Again, $e^{-x^{2}}>0$ for all x, so $f^{\prime \prime}(x)$ is positive or negative depending on whether $2 x\left(2 x^{2}-3\right)$ is positive or negative

x	$x<-\sqrt{\frac{3}{2}}$	$x=-\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}}<x<0$	$x=0$	$0<x<\sqrt{\frac{3}{2}}$	$x=\sqrt{\frac{3}{2}}$	$x>\sqrt{\frac{3}{2}}$
$f^{\prime \prime}(x)$	<0	0	>0	0	<0	0	>0
$f(x)$	conc. down	infl. pt.	conc. up	infl. pt.	conc. down	infl. pt.	conc. up

Thus $f\left(-\sqrt{\frac{3}{2}}\right)=-\sqrt{\frac{3}{2}} e^{-3 / 2}, f(0)=0$, and $f\left(\sqrt{\frac{3}{2}}\right)=\sqrt{\frac{3}{2}} e^{-3 / 2}$ are the inflection points of $f(x)$.
v. (Vertical asymptotes) $f(x)$ has no vertical asymptotes because it is defined and continuous for all x.
vi. (Horizontal asymptotes) $f(x)=x e^{-x^{2}}=\frac{x}{e^{x^{2}}}$ and, since $x \rightarrow \pm \infty$ and $e^{x^{2}} \rightarrow$ infty as $x \rightarrow \pm \infty$, we can use l'Hôpital's Rule in the relevant limits.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x}{e^{x^{2}}} & =\lim _{x \rightarrow+\infty} \frac{1}{2 x e^{x^{2}}}=0 \\
\lim _{x \rightarrow-\infty} \frac{x}{e^{x^{2}}} & =\lim _{x \rightarrow-\infty} \frac{1}{2 x e^{x^{2}}}=0
\end{aligned}
$$

Thus $f(x)$ has a horizontal asymptote at $y=0$ in both directions.
vii. (The graph!) Typing plot $(\mathrm{x} * \exp (-\mathrm{x} * \mathrm{x}), \mathrm{x}=-5.5)$; into Maple gives:

Whew!

