Mathematics 110 – Calculus of one variable TRENT UNIVERSITY, 2003-2004

A Test #1 Solutions

1. Find $\frac{dy}{dx}$ in any three of **a-e**. $[12 = 3 \times 4 \text{ ea.}]$

a.
$$y = x \ln \left(\frac{1}{x}\right)$$
 b. $x^2 + 2xy + y^2 - x = 1$ **c.** $y = \sin \left(e^{\sqrt{x}}\right)$
d. $y = \frac{2^x}{x+1}$ **e.** $y = \cos(2t)$ where $t = x^3 + 2x$

Solutions.

a. Product rule:

First, the direct approach.

$$\frac{dy}{dx} = \frac{d}{dx}x\ln\left(\frac{1}{x}\right) = \frac{1}{1/x} \cdot \frac{d}{dx}\frac{1}{x} = x \cdot \frac{-1}{x^2} = -\frac{1}{x}$$

Second, an alternative, slightly indirect, approach.

$$y = x \ln\left(\frac{1}{x}\right) = x \ln\left(x^{-1}\right) = -x \ln(x)$$

 \mathbf{SO}

$$\frac{dy}{dx} = \frac{d}{dx} \left(-x \ln(x) \right) = -\frac{d}{dx} \ln(x) = -\frac{1}{x} \qquad \blacksquare$$

b. The direct approach is to use implicit differentiation, plus the product and chain rules along the way:

$$x^{2} + 2xy + y^{2} - x = 1 \Longrightarrow \frac{d}{dx} \left(x^{2} + 2xy + y^{2} - x \right) = \frac{d}{dx} 1$$

$$\Longrightarrow \frac{d}{dx} x^{2} + \frac{d}{dx} 2xy + \frac{d}{dx} y^{2} - \frac{d}{dx} x = 0 \Longrightarrow 2x + 2y + 2x \frac{dy}{dx} + 2y \frac{dy}{dx} - 1 = 0$$

$$\Longrightarrow (2x + 2y) \frac{dy}{dx} + (2x + 2y - 1) = 0 \Longrightarrow (2x + 2y) \frac{dy}{dx} = 1 - 2x - 2y$$

$$\Longrightarrow \frac{dy}{dx} = \frac{1 - 2x - 2y}{2x + 2y} = \frac{1}{2x + 2y} - 1$$

An alternate approach is to solve for y first ...

$$x^{2} + 2xy + y^{2} - x = 1 \iff (x+y)^{2} - x = 1 \iff (x+y)^{2} = 1 + x$$
$$\iff x + y = \pm\sqrt{1+x} \iff y = -x \pm\sqrt{1+x}$$

... and then take the derivative:

$$\frac{dy}{dx} = \frac{d}{dx} \left(-x \pm \sqrt{1+x} \right) = -1 \pm \frac{1}{2\sqrt{1+x}} \qquad \blacksquare$$

c. Chain rule, twice:

$$\frac{dy}{dx} = \frac{d}{dx}\sin\left(e^{\sqrt{x}}\right) = \cos\left(e^{\sqrt{x}}\right) \cdot \frac{d}{dx}e^{\sqrt{x}}$$
$$= \cos\left(e^{\sqrt{x}}\right)e^{\sqrt{x}} \cdot \frac{d}{dx}\sqrt{x} = \cos\left(e^{\sqrt{x}}\right)e^{\sqrt{x}}\frac{1}{2\sqrt{x}} \qquad \blacksquare$$

d. Quotient rule:

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{2^x}{x+1}\right) = \frac{\frac{d}{dx}2^x \cdot (x+1) - 2^x \cdot \frac{d}{dx}(x+1)}{(x+1)^2}$$
$$= \frac{\ln(2)2^x \cdot (x+1) - 2^x \cdot 1}{(x+1)^2} = \frac{2^x \left(\ln(2)(x+1) - 1\right)}{(x+1)^2} \qquad \blacksquare$$

e. Chain rule:

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{d}{dt}\cos(2t) \cdot \frac{d}{dx}(x^3 + 2x) = -\sin(2t) \cdot \frac{d}{dt}2t \cdot (3x^2 + 2)$$
$$= -2\sin(2t) \cdot (3x^2 + 2) = -2(3x^2 + 2)\sin(2(x^3 + 2x))$$
$$= -(6x^2 + 4)\sin(2x^3 + 4x)$$

2. Do any two of a-c. $[10 = 2 \times 5 \text{ each}]$ a. Determine whether $g(x) = \begin{cases} \frac{x-1}{x^2-1} & x \neq 1\\ \frac{1}{2} & x = 1 \end{cases}$ is continuous at x = 1 or not.

Solution. g(x) is continuous at x = 1 if and only if $\lim_{x \to 1} g(x)$ exists and equals g(1). Since

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} \frac{x-1}{x^2-1} = \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{1+1} = \frac{1}{2} = g(1),$$

g(x) is continuous at x = 1.

b. Use the definition of the derivative to compute f'(1) for $f(x) = \frac{1}{x}$. Solution. Plug in and run ...

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+h} - \frac{1}{1}}{h} = \lim_{h \to 0} \frac{\frac{1 - (1+h)}{1+h}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{-h}{1+h}}{h} = \lim_{h \to 0} \frac{-h}{h(1+h)} = \lim_{h \to 0} \frac{-1}{1+h} = \frac{-1}{1+0} = -1$$

c. Find the equation of the tangent line to $y = \sqrt{x}$ at x = 9.

Solution. Note that at x = 9, $y = \sqrt{9} = 3$. The slope *m* of the tangent line is equal to the derivative of *y* at x = 9.

$$m = \left. \frac{dy}{dx} \right|_{x=9} = \left. \frac{d}{dx} \sqrt{x} \right|_{x=9} = \left. \frac{1}{2\sqrt{x}} \right|_{x=9} = \frac{1}{2\sqrt{9}} = \frac{1}{2 \cdot 3} = \frac{1}{6}$$

We want the equation y = mx + b of the line with slope $m = \frac{1}{6}$ passing through the point (9,3), and it remains to compute the *y*-intercept, *b*. We do this by plugging in the slope and the coordinates of the point into the equation of the line and solving for *b*:

$$3 = \frac{1}{6} \cdot 9 + b \iff 3 = \frac{3}{2} + b \iff b = 3 - \frac{3}{2} = \frac{3}{2}$$

Thus the equation of the tangent line to $y = \sqrt{x}$ at x = 9 is $y = \frac{1}{6}x + \frac{3}{2}$.

- **3.** Do one of \mathbf{a} or \mathbf{b} . |8|
- **a.** Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 2} x^2 = 4$.

Solution. We need to show that for every $\varepsilon > 0$, there is a $\delta > 0$ such that if x is within δ of 2, then x^2 is within ε of 4. As usual, given ε , we try to reverse-engineer the necessary δ :

$$-\varepsilon < x^2 - 4 < \varepsilon \iff -\varepsilon < (x-2)(x+2) < \varepsilon \iff -\frac{\varepsilon}{x+2} < x-2 < \frac{\varepsilon}{x+2}$$

Unfortunately, δ cannot depend on x, so we need to find a suitable bound for $\frac{\varepsilon}{x+2}$. If we arbitrarily decide to ensure that $\delta \leq 1$, then:

$$-\delta < x - 2 < \delta \Longrightarrow -1 < x - 2 < 1 \Longrightarrow 1 < x < 3 \Longrightarrow 3 < x + 2 < 5$$
$$\Longrightarrow \frac{1}{3} > \frac{1}{x + 2} > \frac{1}{5} \Longrightarrow \frac{\varepsilon}{3} > \frac{\varepsilon}{x + 2} > \frac{\varepsilon}{5}$$

If we now let $\delta = \min\left(1, \frac{\varepsilon}{5}\right)$, this will do the job:

$$\begin{split} -\delta < x - 2 < \delta \Longrightarrow -\frac{\varepsilon}{5} < x - 2 < \frac{\varepsilon}{5} & \text{because } \delta \leq \frac{\varepsilon}{5} \\ \Longrightarrow -\frac{\varepsilon}{x + 2} < x - 2 < \frac{\varepsilon}{x + 2} \\ & \text{because } -1 \leq \delta < x - 2 < \delta \leq 1 \text{ implies that } \frac{\varepsilon}{5} < \frac{\varepsilon}{x + 2} \\ & \Longrightarrow -\varepsilon < (x - 2)(x + 2) < \varepsilon \\ & \Longrightarrow -\varepsilon < x^2 - 4 < \varepsilon & \dots \text{ as desired!} \end{split}$$

Hence $\lim_{x \to 2} x^2 = 4$.

b. Use the $\varepsilon - N$ definition of limits to verify that $\lim_{t \to \infty} \frac{1}{t+1} = 0$.

Solution. We need to show that for every $\varepsilon > 0$, there is an N > 0 such that if x > N, then $\frac{1}{t+1}$ is within ε of 0. Note that as $t \to \infty$, we can assume that t > -1, from which it follows that $\frac{1}{t+1} - 0 > 0 > -\varepsilon$. This means we only have to worry about making $\frac{1}{t+1} - 0 < \varepsilon$. As usual, given ε , we try to reverse-engineer the necessary N:

$$\frac{1}{t+1} - 0 < \varepsilon \iff \frac{1}{t+1} < \varepsilon \iff t+1 > \frac{1}{\varepsilon} \iff t > \frac{1}{\varepsilon} - 1$$

Since every step was reversible here, it follows that $N = \frac{1}{\varepsilon} - 1$ will do the job. Hence $\lim_{t \to \infty} \frac{1}{t+1} = 0.$

4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical and horizontal asymptotes of $f(x) = xe^{-x^2}$ and sketch the graph of f(x) based on this information. [10]

Solution.

- *i.* (*Domain*) Since x and e^{-x^2} are defined and continuous for all x, it follows that $f(x) = xe^{-x^2}$ is defined and continuous for all x.
- *ii.* (Intercepts) $f(x) = xe^{-x^2} = 0 \iff x = 0$, because $e^{-x^2} > 0$ for all x. Thus (0,0) is the only x-intercept and the only y-intercept of f(x).
- *iii.* (Local maxima and minima)

$$f'(x) = \frac{d}{dx} \left(x e^{-x^2} \right) = \frac{d}{dx} x \cdot e^{-x^2} + x \cdot \frac{d}{dx} e^{-x^2} = 1 \cdot e^{-x^2} + x \cdot e^{-x^2} \cdot \frac{d}{dx} \left(-x^2 \right)$$
$$= e^{-x^2} + x \cdot e^{-x^2} \cdot \left(-2x \right) = \left(1 - 2x^2 \right) e^{-x^2}$$

which is also defined for all x.

Since $e^{-x^2} > 0$ for all x,

$$f'(x) = 0 \iff 1 - 2x^2 = 0 \iff x^2 = \frac{1}{2} \iff x = \pm \frac{1}{\sqrt{2}}.$$

We determine which of these give local maxima or minima by considering the intervals of increase and decrease. Note that since $e^{-x^2} > 0$ for all x, f'(x) is positive or negative depending on whether $1 - 2x^2$ is positive or negative.

x	$x < -\frac{1}{\sqrt{2}}$	$x = -\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$	$x = \frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} < x$
f'(x)	< 0	0	> 0	0	< 0
f(x)	decreasing	local min	increasing	local max	decreasing

Thus $f\left(-\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}}e^{-1/2}$ and $f\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-1/2}$ are, respectively, local minimum and local maximum points of f(x).

iv. (*Points of inflection and curvature*)

$$f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}\left[\left(1 - 2x^2\right)e^{-x^2}\right] = \frac{d}{dx}\left(1 - 2x^2\right) \cdot e^{-x^2} + \left(1 - 2x^2\right) \cdot \frac{d}{dx}e^{-x^2}$$
$$= -4xe^{-x^2} + \left(1 - 2x^2\right)e^{-x^2}\frac{d}{dx}\left(-x^2\right) = -4xe^{-x^2} + \left(1 - 2x^2\right)e^{-x^2}\left(-2x\right)$$
$$= \left(-4x - 2x + 4x^3\right)e^{-x^2} = \left(4x^3 - 6x\right)e^{-x^2} = 2x\left(2x^2 - 3\right)e^{-x^2}$$

which is also defined for all x.

Since $e^{-x^2} > 0$ for all x, f''(x) = 0 if x = 0 or $x = \pm \sqrt{\frac{3}{2}}$. To sort out the inflection points and intervals of curvature, we check where f''(x) is positive and where it is negative. Again, $e^{-x^2} > 0$ for all x, so f''(x) is positive or negative depending on whether $2x(2x^2 - 3)$ is positive or negative

x	$x < -\sqrt{\frac{3}{2}}$	$x = -\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}} < x < 0$	x = 0	$0 < x < \sqrt{\frac{3}{2}}$	$x = \sqrt{\frac{3}{2}}$	$x > \sqrt{\frac{3}{2}}$
f''(x)	< 0	0	> 0	0	< 0	0	> 0
f(x)	conc. down	infl. pt.	conc. up	infl. pt.	conc. down	infl. pt.	conc. up

Thus $f\left(-\sqrt{\frac{3}{2}}\right) = -\sqrt{\frac{3}{2}}e^{-3/2}$, f(0) = 0, and $f\left(\sqrt{\frac{3}{2}}\right) = \sqrt{\frac{3}{2}}e^{-3/2}$ are the inflection points of f(x).

- v. (Vertical asymptotes) f(x) has no vertical asymptotes because it is defined and continuous for all x.
- vi. (Horizontal asymptotes) $f(x) = xe^{-x^2} = \frac{x}{e^{x^2}}$ and, since $x \to \pm \infty$ and $e^{x^2} \to infty$ as $x \to \pm \infty$, we can use l'Hôpital's Rule in the relevant limits.

$$\lim_{x \to +\infty} \frac{x}{e^{x^2}} = \lim_{x \to +\infty} \frac{1}{2xe^{x^2}} = 0$$
$$\lim_{x \to -\infty} \frac{x}{e^{x^2}} = \lim_{x \to -\infty} \frac{1}{2xe^{x^2}} = 0$$

Thus f(x) has a horizontal asymptote at y = 0 in both directions.

vii. (The graph!) Typing plot(x*exp(-x*x),x=-5..5); into MAPLE gives:

Whew!