Mathematics 110 - Calculus of one variable

Trent University, 2003-2004
Test \#2 - Section A
Wednesday, 11 February, 2004
Time: 50 minutes

Instructions

- Please show all your work and make every effort to keep your solution neat and legible.
- If you have a question, ask it!
- You may use a calculator and one of an $8.5 " \times 11$ " aid sheet or the pamphlet Formula for Success.

1. Compute any three of the integrals in parts a-f. $\quad[12=3 \times 4$ each $]$
a. $\int_{0}^{\pi / 2} \cos ^{3}(x) d x$
b. $\int \frac{1}{x^{2}+3 x+2} d x$
c. $\int_{2}^{\infty} \frac{1}{\sqrt{x}} d x$
d. $\int \frac{\arctan (x)}{x^{2}+1} d x$
e. $\int \ln \left(x^{2}\right) d x$
f. $\int_{1}^{2} \frac{1}{x^{2}-2 x+2} d x$
2. Do any two of parts a-d. $[8=2 \times 4$ each]
a. Find a definite integral computed by the Right-hand Rule sum

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n}\left(1+\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n}
$$

b. Compute $\frac{d}{d x}\left(\int_{0}^{\tan (x)} e^{\sqrt{t}} d t\right)$.
c. Find the area under the parametric curve given by $x=1+t^{2}$ and $y=t(1-t)$ for $0 \leq t \leq 1$.
d. Sketch the region whose area is computed by the integral $\int_{0}^{1} \arctan (x) d x$.
3. Find the volume of the solid obtained by rotating the region bounded by $y=\frac{1}{x}$, $y=\frac{1}{2}$, and $x=1$ about the line $x=-1 . \quad[10]$
4. Find the area of the surface obtained by rotating the curve $y=\ln (x), 0<x \leq 1$, about the y-axis. [10]

$$
[\text { Total }=40]
$$

