Mathematics 110 – Calculus of one variable

TRENT UNIVERSITY, 2003-2004

§**A** – **Test #1** Wednesday, 12 November, 2003 Time: 50 minutes

Instructions

- Show all your work.
- If you have a question, *ask*!
- You may use a calculator and either a two-sided $8.5" \times 11"$ aid sheet or the pamphlet Formula for Success.
- **1.** Find $\frac{dy}{dx}$ in any three of **a-e**. $[12 = 3 \times 4 \text{ ea.}]$

a.
$$y = x \ln \left(\frac{1}{x}\right)$$
 b. $x^2 + 2xy + y^2 - x = 1$ **c.** $y = \sin \left(e^{\sqrt{x}}\right)$
d. $y = \frac{2^x}{x+1}$ **e.** $y = \cos(2t)$ where $t = x^3 + 2x$

2. Do any two of **a-c**. $[10 = 2 \times 5 \text{ each}]$

a. Determine whether $g(x) = \begin{cases} \frac{x-1}{x^2-1} & x \neq 1\\ \frac{1}{2} & x = 1 \end{cases}$ is continuous at x = 1 or not.

b. Use the definition of the derivative to compute f'(1) for $f(x) = \frac{1}{x}$.

- **c.** Find the equation of the tangent line to $y = \sqrt{x}$ at x = 9.
- **3.** Do *one* of **a** or **b**. [8]
 - **a.** Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 2} x^2 = 4$. **b.** Use the $\varepsilon - N$ definition of limits to verify that $\lim_{t \to \infty} \frac{1}{t+1} = 0$.
- 4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical and horizontal asymptotes of $f(x) = xe^{-x^2}$ and sketch the graph of f(x) based on this information. [10]

|Total = 40|