Mathematics 110 - Calculus of one variable

Trent University, 2003-2004
$\S A-$ Test \#1
Wednesday, 12 November, 2003
Time: 50 minutes

Instructions

- Show all your work.
- If you have a question, ask!
- You may use a calculator and either a two-sided $8.5 " \times 11$ " aid sheet or the pamphlet Formula for Success.

1. Find $\frac{d y}{d x}$ in any three of a-e. $\quad[12=3 \times 4 e a$.
a. $y=x \ln \left(\frac{1}{x}\right)$
b. $x^{2}+2 x y+y^{2}-x=1$
c. $y=\sin \left(e^{\sqrt{x}}\right)$
d. $y=\frac{2^{x}}{x+1}$
e. $y=\cos (2 t)$ where $t=x^{3}+2 x$
2. Do any two of a-c. $[10=2 \times 5$ each $]$
a. Determine whether $g(x)=\left\{\begin{array}{ll}\frac{x-1}{x^{2}-1} & x \neq 1 \\ \frac{1}{2} & x=1\end{array}\right.$ is continuous at $x=1$ or not.
b. Use the definition of the derivative to compute $f^{\prime}(1)$ for $f(x)=\frac{1}{x}$.
c. Find the equation of the tangent line to $y=\sqrt{x}$ at $x=9$.
3. Do one of \mathbf{a} or \mathbf{b}. [8]
a. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2} x^{2}=4$.
b. Use the $\varepsilon-N$ definition of limits to verify that $\lim _{t \rightarrow \infty} \frac{1}{t+1}=0$.
4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical and horizontal asymptotes of $f(x)=x e^{-x^{2}}$ and sketch the graph of $f(x)$ based on this information. [10]

$$
[\text { Total }=40]
$$

