Mathematics 110 - Calculus of one variable

Trent University 2003-2004
§A Quizzes
Quiz \#1. Friday, 19 September, 2003. [10 minutes]
12:00 Seminar

1. How close does x have to be to 1 in order to guarantee that $\frac{1}{x}$ is within $\frac{1}{10}$ of 1 ? [10]

13:00 Seminar

1. Find a value of $\delta>0$ that ensures that $-1<\sqrt{x}-4<1$ whenever $-\delta<x-16<\delta$. [10]

Leftovers

1. Use the $\varepsilon-\delta$ definition of limits to verify that that $\lim _{x \rightarrow 0} 1=1$. [10]

Hint: Try any $\delta>0$ you like \ldots
Quiz \#2. Monday, 29 September, 2003. [10 minutes]

1. Use the $\varepsilon-\delta$ definition of limits to verify that that $\lim _{x \rightarrow 0} \sin ^{2}(x)=0$. [10]

Hint: You may use the fact that $|\sin (x)| \leq|x|$.
Quiz \#3. Friday, 3 October, 2003. [15 minutes]

12:00 Seminar

Evaluate

$$
\text { 1. } \lim _{x \rightarrow \infty} \frac{x-2}{x^{2}-3 x+2} \quad[5] \quad \text { 2. } \lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{2 x}-1}
$$

13:00 Seminar

Evaluate

$$
\text { 1. } \lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}+2 x-3} \quad[5] \quad \text { 2. } \lim _{x \rightarrow \infty} \frac{(x+4)^{2}}{41 x^{2}+43 x+47}
$$

Leftovers

1. For what value(s) of the constant c does $\lim _{x \rightarrow 2}(c x+3)=\lim _{t \rightarrow \infty} \frac{c t^{2}+3+c}{t^{2}+1}$? [10]

Quiz \#4. Friday, 10 October, 2003. [10 minutes]

12:00 Seminar

1. Use the limit definition of the derivative to find $f^{\prime}(0)$ if $f(x)=(x+1)^{3}$. [10]

13:00 Seminar

1. Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{1}{x}$. [10]

Leftovers

1. Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=x^{2}-3 x$. [10]

Quiz \#5. Friday, 17 October, 2003. [10 minutes]

12:00 Seminar

Find $\frac{d y}{d x}$ in each of the following:

1. $y=\ln (\sec (x)+\tan (x)) \quad$ [3]
2. $\quad e^{x y}=2 \quad[3]$
3. $y=\frac{x^{2}+4 x+4}{x+3} \quad$ [4]

13:00 Seminar

Find $\frac{d y}{d x}$ in each of the following:

1. $y=\left(1+x^{2}\right) \arctan (x) \quad[3]$
2. $\quad \tan (x+y)=1 \quad$ [3]
3. $y=\frac{e^{x}+1}{e^{2 x}-1} \quad[4]$

Leftovers

Find $\frac{d y}{d x}$ in each of the following:

1. $y=\sqrt{1-e^{2 x}} \quad[3]$
2. $y=\frac{\tan (x)}{\cos (x)} \quad$ [3]
3. $\quad \ln (x+y)=x \quad[4]$

Quiz \#6. Friday, 31 October, 2003. [15 minutes]

12:00 Seminar

1. A ladder 5 m long rests against a vertical wall. If the top of the ladder slips down at a rate of $1 \mathrm{~m} / \mathrm{s}$, how is angle between the bottom of the ladder and the ground changing when the top of the ladder is $4 m$ above the ground? [10]

13:00 Seminar

1. A searchlight is on an island 8 km from the nearest point, call it P, on the mainland (which has a straight shore). The searchlight makes one revolution each minute. How swiftly is the light beam moving along the shore when it is 6 km from and moving towards P? [10]

Leftovers

1. Kypalo, walking along a straight path at $4 \mathrm{~m} / \mathrm{s}$, passes a tree 3 m from the path. How is the distance between Kypalo and the tree changing $1 s$ after the Kypalo passes the tree? [10]
Quiz \#7. Friday, 7 November, 2003. [15 minutes]
2. Find all the intercepts, the maximum, minimum, and inflection points, and the horizontal and vertical asymptotes of the following function:

12:00: $f(x)=\frac{x}{x^{2}+1} \quad$ 13:00: $\quad g(x)=\frac{x-1}{x+1} \quad$ Leftovers: $\quad h(x)=\frac{x^{2}+1}{x} \quad[10]$

Quiz \#8. Friday, 21 November, 2003. [12 minutes]

1. Use the Right-hand Rule to compute the area under $y=f(x)$ for $0 \leq x \leq 2$. [10]

12:00: $f(x)=(x+1)^{2}-1 \quad$ 13:00: $f(x)=x^{2}-4 x+5$
Leftovers: $f(x)=2 x^{2}+x+3$
Hint: You may use the facts that

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Quiz \#9. Friday, 28 November, 2003. [12 minutes]

1. Compute the following integrals. [10]
12:00:
a. $\int \frac{\sin (x)}{\cos ^{2}(x)} d x$
b. $\int \frac{\sqrt{\ln (x)}}{6 x} d x$
13:00:
a. $\int \frac{\sin (\sqrt{x})}{4 \sqrt{x}} d x$
b. $\int\left(\sin ^{2}(x) \cos (x)+\cos (x)\right) d x$
Leftovers: a. $\int \frac{4 \arctan ^{3}(x)}{1+x^{2}} d x \quad$ b. $\quad \int\left(e^{x}-1\right)^{2} e^{x} d x$

Quiz \#10. Friday, 5 December, 2003. [10 minutes]

1. Compute the following integral. [10]

$$
\text { 12:00: } \quad \int_{0}^{\pi / 4} \tan (x) \ln (\sec (x)) d x \quad \text { 13:00: } \quad \int_{0}^{1} \frac{(x-1)^{2}}{x^{2}+1} d x
$$

Leftovers: $\int_{0}^{1}\left(x^{2}+1\right)^{15} x^{3} d x$

Quiz \#11. Friday, 9 January, 2004. [12 minutes]

1. Compute the following integral. [10]

$$
\begin{aligned}
& \text { 12:00: } \int \sin (2 x) \sin (x) d x \quad \text { 13:00: } \int\left(\tan ^{2}(x)-1\right) d x \\
& \text { Leftovers: } \int \sec ^{3 / 2}(x) \tan (x) d x
\end{aligned}
$$

Quiz \#12. Friday, 16 January, 2004. [15 minutes]

1. Compute the following integral. [10]

12:00: $\int \frac{\sqrt{x^{2}-4}}{x^{2}} d x \quad$ 13:00: $\quad \int_{0}^{2} x \sqrt{4-x^{2}} d x$
Leftovers: $\int \frac{x^{3}}{\sqrt{x^{2}+9}} d x$

Quiz \#13. Friday, 23 January, 2004. [15 minutes]

1. Compute the following integral. [10]

$$
\begin{aligned}
& \text { 12:00: } \int \frac{5}{(x-1)\left(x^{2}+2 x+2\right)} d x \quad \text { 13:00: } \int \frac{4}{\left(x^{2}-1\right)(x-1)} d x \\
& \text { Leftovers: } \int \frac{x^{2}-2 x+1}{x^{2}-x-2} d x
\end{aligned}
$$

Quiz \#14. Monday, 2 February, 2004. [15 minutes]

Lecture

1. Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}$, $y=0$, and $x=1$ about the y-axis. [10]

Leftovers

1. Find the volume of the solid obtained by rotating the region bounded by $y=\cos (x)$ and $y=0$ for $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$ about the y-axis. [10]
Quiz \#15. Friday, 6 February, 2004. [15 minutes]
12:00
2. Find the area of the surface obtained by rotating the curve $y=\frac{x^{3}}{3}, 0 \leq x \leq 1$, about the x-axis. [10]

13:00

1. Find the arc-length of the curve $y=-\ln (\cos (x)), 0 \leq x \leq \frac{\pi}{4}$. [10]

Leftovers

1. Find the area of the surface obtained by rotating the curve $y=\ln (x), 1 \leq x \leq e$, about the y-axis. [10]
