Mathematics 110 - Calculus of one variable

§A Final Examination

Trent University, 8 April, 2004
Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Show all your work and justify all your answers. If in doubt, ask!
Aids: Calculator; an $8.5^{\prime \prime} \times 11^{\prime \prime}$ aid sheet or the pamphlet Formula for Success; one brain.
Part I. Do all three of $\mathbf{1 - 4}$.

1. Find $\frac{d y}{d x}$ (in terms of x and/or y) in any three of $\mathbf{a}-\mathbf{f} . \quad[15=3 \times 5 \mathrm{ea}$.]
a. $y=x^{2} \sin (x+3)$
b. $e^{x y}=2$
c. $y=\cos ^{2}\left(x^{2}\right)$
d. $\begin{aligned} & y=t^{2} \\ & x=t^{3}\end{aligned}$
e. $y=\int_{0}^{x^{2}} \sqrt{w} d w$
f. $y=\frac{\cos (x)}{1+\tan (x)}$
2. Evaluate any three of the integrals $\mathbf{a}-\mathbf{f} . \quad[15=3 \times 5$ ea. $]$
a. $\int_{e}^{\infty} \frac{1}{x \ln (x)} d x$
b. $\int x e^{-x} d x$
c. $\int_{-1}^{1} \frac{2 s}{1+s^{4}} d s$
d. $\int \frac{1}{\sqrt{x^{2}+4}} d x$
e. $\int_{0}^{1} \arctan (t) d t$
f. $\int \frac{3 x-3}{x^{2}+x-2} d x$
3. Determine whether the series converges absolutely, converges conditionally, or diverges in any two of $\mathbf{a}-\mathbf{d} . \quad[10=2 \times 5 \mathrm{ea}$.
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
b. $\sum_{n=0}^{\infty}\left(3^{n}-2^{n}\right)$
c. $\sum_{n=0}^{\infty} \frac{n}{1+n^{2}}$
d. $\sum_{n=0}^{\infty} 3^{-n} 2^{n} \cos (n \pi)$
4. Do any three of $\mathbf{a}-\mathbf{f}$. $\quad[15=3 \times 5$ ea.]
a. Use an $\varepsilon-N$ argument to verify that $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.
b. Sketch the polar curve $r=\theta$ for $-\pi \leq \theta \leq \pi$ and find its slope at $\theta=0$.
c. Evaluate $\lim _{x \rightarrow 0} \frac{x^{2}}{\tan (x)}$ or show that the limit does not exist.
d. Use the Right-hand Rule to compute the definite integral $\int_{0}^{2}(x+1) d x$.
e. Find the area of the surface obtained by rotating the curve $y=2 x, 0 \leq x \leq 2$, about the y-axis.
f. Determine whether $f(x)=\left\{\begin{array}{ll}1-e^{x} & x \leq 0 \\ \ln (x+1) & x>0\end{array}\right.$ is continuous at $x=0$ or not.

Part II. Do one of $\mathbf{5}$ or $\mathbf{6}$.
5. A container of volume $54 \pi \mathrm{~cm}^{3}$ is made from sheet metal. Find the dimensions of such a container which require the least amount sheet metal to make if:
a. The container is cylindrical, with a bottom but without a top. [13]
b. The container is a sphere. [2]

Hint: The volume of a cylinder of radius r and height h is $\pi r^{2} h$; the volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.
6. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $f(x)=\frac{x}{1+x^{2}}$, and sketch its graph. [15]

Part III. Do one of $\mathbf{7}$ or $\mathbf{8}$.
7. Find the surface area of a cone with height 8 cm and radius 2 cm at the base. [15]
8. Consider the region bounded above by $y=\sin (x)$ and below by $y=\frac{2}{\pi} x$ for $0 \leq x \leq \frac{\pi}{2}$.
a. Sketch this region. [2]
b. Sketch the solid obtained by revolving this region about the x-axis. [3]
c. Find the volume of this solid. [10]

Part IV. Do one of $\mathbf{9}$ or $\mathbf{1 0}$.
9. Let $f(x)=\cos (x)$.
a. Find the Taylor series of $f(x)$ centred at $a=\pi$. [8]
b. Determine the radius and interval of convergence of this Taylor series. [4]
c. Use your work for a to help find the Taylor series of $g(x)=\sin (x)$ at $a=\pi$. [3]
10. Consider the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}$.
a. Find the radius and interval of convergence of this power series. [7]
b. What function has this power series as its Taylor series at $a=0$? [8]
$[$ Total $=100]$
Part i. Bonus!
$s \pi$. Write a little poem about calculus or mathematics in general.

I hope that you enjoyed the course! Enjoy the summer too!

