\qquad Final Exam

- There are 12 questions, worth $\mathbf{2 0 0}$ marks in total.

Read all questions before beginning.

- You may use a formula sheet, or the Formulas for Success pamphlet.
- Justify your answers. Show all steps in your computations.
- Please indicate your final answer by putting a box around it.
- Please write neatly and legibly. Illegible answers will not be graded.
- If anything confuses you, please ask me about it.

1. Compute the following limits (5 points each):
(a) $\lim _{x \rightarrow 0} x \log (x)$.
(b) $\lim _{x \rightarrow \infty} \frac{x^{3}-6 x^{2}}{7 x^{3}-x+4}$.
2. Sketch the curve of $f(x)=\log \left(x^{2}+1\right)-2 \arctan (x)$. Label all maxima and minima (if any) and asymptotes (if any). Find $\lim _{x \rightarrow \pm \infty} f(x)$.
3. If $f(x)=3 x+5$, then $f(2)=11$. How close must x be to 2 , in order that $|f(x)-11|<\frac{1}{2} ?$
4. Compute $f^{\prime}(x)$ in each of the following cases:
(a) $\quad f(x)=\ln \left(\frac{\sqrt[7]{x^{2}+6} \cdot\left(x^{3}-5\right)^{2}}{(x-2)^{4}}\right)$.(Hint: simplify first.)
(b) $\quad f(x)=\sin ^{2}(x) \cdot \log (x)+\frac{\tan (x)}{x^{3}}$.
(c) $f(x)=\int_{0}^{\cos (x)} t^{3} d t$.
5. A snowball is melting. At each instant, its volume decreases at a rate directly proportional to its surface area. For example, when the surface has area $15 \mathrm{~cm}^{2}$, the snowball is losing water at $30 \mathrm{~cm}^{3} / \mathrm{sec}$. When the surface area is $10 \mathrm{~cm}^{2}$, the snowball is losing $20 \mathrm{~cm}^{3} / \mathrm{sec}$.
(a) If $V(t)$ is the volume of the snowball at time t, and $A(t)$ is its surface area, write a formula for $\frac{d V}{d t}$ in terms of $A(t)$.
(b) A sphere of radius r has volume $V(r)=\frac{4}{3} \pi r^{3}$ and surface area $A(r)=4 \pi r^{2}$. Write a formula for $\frac{d V}{d r}$ in terms of $A(r)$.
(c) Use $\# 5 \mathrm{a}$ and $\# 5 \mathrm{~b}$ to derive an equation for $\frac{d r}{d t}$.
(d) Use $\# 5 \mathrm{c}$ to derive an equation for r as a function of t.
(e) If the snowball has a radius of 10 cm , then how long until it completely melts?
6. Do three of the following five integrals: (15 marks each)
(a) $\int_{\pi / 6}^{\pi / 4} \cos (\theta) \csc (\theta)^{5} d \theta$.
(b) $\int \frac{x}{\left(x^{2}+1\right)^{2}} d x$.
(c) $\int_{0}^{\pi} x \cos (5 x) d x$.
(d) $\int \cos ^{5}(\theta) \cdot \sin (\theta)^{2} d \theta$.
(e) $\int \sin ^{2}(\theta) d \theta$.
7. Determine whether or not the following improper integral converges. Justify your answer. (Note: You do not have to compute the integral)

$$
\int_{1}^{\infty} \frac{\log (x) \cdot\left(x^{3}+4\right)}{x^{6}+2} d x .
$$

8. Compute $\int_{0}^{1} 3 x+7 d x$ using right-hand Riemann sums. (Do not antidifferentiate.)
9. Compute the volume of a cone of height 2 and radius 2, using the Method of Disks (Hint: See picture on front)
10. For each of the following series, determine whether the series diverges, converges conditionally, or converges absolutely.
(a) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\log (n)+2}$.
(b) $\quad \sum_{n=1}^{\infty} \frac{\arctan (n)}{\sqrt{n+1}}$.
(c) $\quad \sum_{n=0}^{\infty} \frac{n^{3}+1}{3^{n}}$.
11. Consider power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(n^{2}+1\right)}{n!} x^{n}=1-2 x+\frac{5}{2} x^{2}-\frac{10}{6} x^{3}+\frac{17}{24} x^{4}-\ldots$
(a) Find the radius of convergence of this power series.
(b) What is the interval of convergence of this power series?
12. Let $f(x)=\sin (2 x)+\cos (2 x)$
(a) Compute $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ and $f^{\prime \prime \prime \prime}(x)$.
(b) Write the first 8 terms in the McLaurin series for $f(x)$. (Don't worry about the radius of convergence.)
