# Mathematics 110 - Calculus of one variable <br> $\S$ A Final Examination <br> Trent University, 23 April, 2002 

Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Show all your work and justify all your answers. If in doubt, ask!
Aids: Calculator; an $8.5^{\prime \prime} \times 11^{\prime \prime}$ aid sheet or the pamphlet Formula for Success; one brain.
Part I. Do all three of $\mathbf{1 - 3}$.

1. Find $\frac{d y}{d x}$ (in terms of $x$ and/or $y$ ) in any three of $\mathbf{a}-\mathbf{f} . \quad[15=3 \times 5$ ea.]
a. $y=\frac{x^{2}-1}{x^{2}+1}$
b. $y=\int_{-x}^{x} e^{4 t} d t$
c. $\begin{aligned} & y=\cos (t) \\ & x=\sin (t)\end{aligned}$
d. $y=\arcsin (3 x)$
e. $x^{2}+2 x y+y^{2}=1$
f. $y=\ln \left(x^{2}-2 x+1\right)$
2. Evaluate any three of the integrals $\mathbf{a}-\mathbf{f} . \quad[15=3 \times 5 e a$.
a. $\int \frac{x+2}{x^{2}+4 x+5} d x$
b. $\int_{0}^{\infty} \frac{1}{t^{2}+1} d t$
c. $\int \frac{1}{x^{2}-5 x+6} d x$
d. $\int_{1}^{e} \ln (y) d y$
e. $\int \frac{1}{\sqrt{4-x^{2}}} d x$
f. $\int_{0}^{\pi} \cos ^{2}(w) \sin (w) d w$
3. Do any five of $\mathbf{a}-\mathbf{j} . \quad[25=5 \times 5 \mathrm{ea}$.]
a. Does $\sum_{n=1}^{\infty} \frac{(-1)^{n} \arctan (n)}{n^{2}}$ converge absolutely, converge conditionally, or diverge?
b. Evaluate $\lim _{x \rightarrow 0} \frac{x}{e^{x}-1}$ or show that the limit does not exist.
c. Find the arc-length of the curve given by $y=1-t^{2}$ and $x=1+t^{2}$ for $0 \leq t \leq 1$.
d. What is the sum of the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n!}$ when it converges?
e. Sketch the region described by $0 \leq r \leq \csc (\theta)$ and $\pi / 4 \leq \theta \leq \pi / 2$ in polar coordinates and find its area.
f. Use an $\varepsilon-\delta$ argument to verify that $\lim _{t \rightarrow 3}(2 x-4)=2$.
g. Determine the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^{n+1}}{2^{n}} x^{n}$.
h. For which values of $c$ is $f(x)=\left\{\begin{array}{ll}\cos (x) & x \leq \pi \\ c x & x>\pi\end{array}\right.$ continuous at $x=\pi$ ?
i. Find the absolute maximum and minimum points, if any, of $f(x)=x^{3}-3 x$ on the interval $-2 \leq x \leq 2$.
j. Give an integral corresponding to the Right-hand Rule sum $\sum_{i=1}^{n} \frac{2 i}{n} \tan \left(1+\frac{i}{n}\right)$.

Part II. Do one of $\mathbf{4}$ or 5 .
4. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $g(x)=e^{-x^{2}}$, and sketch its graph. [15]
5. Sand is poured onto a level floor at the rate of $60 \mathrm{l} / \mathrm{min}$. It forms a conical pile whose height is equal to the radius of the base. How fast is the height of the pile increasing when the pile is $2 m$ high? [15]
[The volume of a cone of height $h$ and base radius $r$ is $\frac{1}{3} \pi r^{2} h$.]
Part III. Do one of $\mathbf{6}$ or $\mathbf{7}$.
6. Consider the curve $y=\sqrt{x}, 0 \leq x \leq 4$.
a. Sketch the curve. [1]
b. Sketch the surface obtained by revolving the curve about the $x$-axis. [2]
c. Find the area of the surface. [12]
7. Consider the region in the first quadrant bounded by $y=\sqrt{x}$ and $y=\frac{x}{2}$.
a. Sketch the region. [2]
b. Sketch the solid obtained by revolving the region about the $y$-axis. [2]
c. Find the volume of the solid. [11]

Part IV. Do one of $\mathbf{8}$ or $\mathbf{9}$.
8. Consider the power series $\sum_{n=1}^{\infty}(-2)^{n} n x^{n-1}=-2+8 x-24 x^{2}+64 x^{3}-160 x^{4}+\cdots$
a. Find the radius and interval of convergence of this power series. [9]
b. What function has this power series as its Taylor series at $a=0$ ? [6]
9. Let $f(x)=e^{2 x-2}$.
a. Find the Taylor series at $a=1$ of $f(x)$. [10]
b. Find the radius and interval of convergence of this Taylor series. [5]
$[$ Total $=100]$
Part MMIII. Bonus!
-1. Write a little poem about calculus or mathematics in general. [2]
-2. Find the surface area of a cone with base radius $r$ and height $h$. For maximum credit, do this without using any calculus. [2]

I hope you've had a good time! Have a good summer!

