Mathematics 110 – Calculus of one variable

§A FINAL EXAMINATION Trent University, 23 April, 2002

Time: 3 hours

Brought to you by Стефан Біланюк.

Instructions: Show all your work and justify all your answers. If in doubt, **ask!** Aids: Calculator; an $8.5'' \times 11''$ aid sheet or the pamphlet Formula for Success; one brain.

Part I. Do all three of 1 - 3.

1. Find
$$\frac{dy}{dx}$$
 (in terms of x and/or y) in any three of **a** – **f**. [15 = 3 × 5 ea.]
a. $y = \frac{x^2 - 1}{x^2 + 1}$ **b.** $y = \int_{-x}^{x} e^{4t} dt$ **c.** $\substack{y = \cos(t) \\ x = \sin(t)}$
d. $y = \arcsin(3x)$ **e.** $x^2 + 2xy + y^2 = 1$ **f.** $y = \ln(x^2 - 2x + 1)$

2. Evaluate any *three* of the integrals $\mathbf{a} - \mathbf{f}$. [15 = 3 × 5 ea.]

a.
$$\int \frac{x+2}{x^2+4x+5} dx$$
 b. $\int_0^\infty \frac{1}{t^2+1} dt$ **c.** $\int \frac{1}{x^2-5x+6} dx$
d. $\int_1^e \ln(y) dy$ **e.** $\int \frac{1}{\sqrt{4-x^2}} dx$ **f.** $\int_0^\pi \cos^2(w) \sin(w) dw$

3. Do any five of $\mathbf{a} - \mathbf{j}$. [25 = 5 × 5 ea.]

- **a.** Does $\sum_{n=1}^{\infty} \frac{(-1)^n \arctan(n)}{n^2}$ converge absolutely, converge conditionally, or diverge?
- **b.** Evaluate $\lim_{x\to 0} \frac{x}{e^x 1}$ or show that the limit does not exist.

c. Find the arc-length of the curve given by $y = 1 - t^2$ and $x = 1 + t^2$ for $0 \le t \le 1$.

- **d.** What is the sum of the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n!}$ when it converges?
- e. Sketch the region described by $0 \le r \le \csc(\theta)$ and $\pi/4 \le \theta \le \pi/2$ in polar coordinates and find its area.
- **f.** Use an $\varepsilon \delta$ argument to verify that $\lim_{t \to 3} (2x 4) = 2$.

g. Determine the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^{n+1}}{2^n} x^n$.

- **h.** For which values of c is $f(x) = \begin{cases} \cos(x) & x \le \pi \\ cx & x > \pi \end{cases}$ continuous at $x = \pi$?
- i. Find the absolute maximum and minimum points, if any, of $f(x) = x^3 3x$ on the interval $-2 \le x \le 2$.
- **j.** Give an integral corresponding to the Right-hand Rule sum $\sum_{i=1}^{n} \frac{2i}{n} \tan\left(1 + \frac{i}{n}\right)$.

Part II. Do one of 4 or 5.

- 4. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $g(x) = e^{-x^2}$, and sketch its graph. [15]
- 5. Sand is poured onto a level floor at the rate of 60 l/min. It forms a conical pile whose height is equal to the radius of the base. How fast is the height of the pile increasing when the pile is 2 m high? [15]

[The volume of a cone of height h and base radius r is $\frac{1}{3}\pi r^2 h$.]

Part III. Do one of 6 or 7.

- **6.** Consider the curve $y = \sqrt{x}$, $0 \le x \le 4$.
 - **a.** Sketch the curve. [1]
 - **b.** Sketch the surface obtained by revolving the curve about the x-axis. [2]
 - **c.** Find the area of the surface. [12]

7. Consider the region in the first quadrant bounded by $y = \sqrt{x}$ and $y = \frac{x}{2}$.

- **a.** Sketch the region. [2]
- **b.** Sketch the solid obtained by revolving the region about the y-axis. [2]
- **c.** Find the volume of the solid. [11]

Part IV. Do one of 8 or 9.

8. Consider the power series $\sum_{n=1}^{\infty} (-2)^n nx^{n-1} = -2 + 8x - 24x^2 + 64x^3 - 160x^4 + \cdots$

- **a.** Find the radius and interval of convergence of this power series. [9]
- **b.** What function has this power series as its Taylor series at a = 0? [6]
- **9.** Let $f(x) = e^{2x-2}$.
 - **a.** Find the Taylor series at a = 1 of f(x). [10]
 - **b.** Find the radius and interval of convergence of this Taylor series. [5]

|Total = 100|

Part MMIII. Bonus!

- -1. Write a little poem about calculus or mathematics in general. [2]
- -2. Find the surface area of a cone with base radius r and height h. For maximum credit, do this without using any calculus. [2]

I HOPE YOU'VE HAD A GOOD TIME! HAVE A GOOD SUMMER!