Math 110 — Assignment #6 Due: Monday, February 10

- Justify your answers. Show all steps in your computations.
- Please indicate your final answer by putting a box around it.
- Please write neatly and legibly. Illegible answers will not be graded.
- Math 110A: When finished, please give your assignment to Stefan or leave it under his door.
- Math 110B: When finished, please place your assignment in slot marked MATH 110 in the big white box outside the Math Department Office in Lady Eaton College.

Let $f: [0, 2\pi] \longrightarrow \mathbb{R}$ be a function. For $n = 1, 2, 3, \ldots$, we define the Fourier Coefficients:

$$A_n = \int_0^{2\pi} f(x) \cdot \cos(nx) \, dx, \quad \text{and} \quad B_n = \int_0^{2\pi} f(x) \cdot \sin(nx) \, dx$$

For example, if $f(x) = \sin^3(x)$, and n = 7, then

$$A_7 = \int_0^{2\pi} \sin^3(x) \cdot \cos(7x) \, dx$$
, and $B_7 = \int_0^{2\pi} \sin^3(x) \cdot \sin(7x) \, dx$.

Physically speaking, if f(x) describes the vibration of a string, then A_7 and B_7 measure the amount of energy vibrating at 7 cycles per second (ie. 7 Hz). Likewise, A_8 and B_8 measure the amount of energy vibrating at 8 Hz, etc.

Suppose $f(x) = \sin^3(x)$.

1. Compute f'(x) and f''(x).

Solution:
$$f'(x) = 3\sin^2(x)\cos(x)$$
 and $f''(x) = 6\sin(x)\cos^2(x) - 3\sin^3(x)$.

2. Show that $|f'(x)| \leq 3$ for all $x \in [0, 2\pi]$, and $|f'(x)| \leq 9$ for all $x \in [0, 2\pi]$.

Solution: $|\sin(x)| \le 1$ and $|\cos(x)| \le 1$ for all x. Thus, $|f'(x)| = |3\sin^2(x)\cos(x)| = 3|\sin(x)| \cdot |\cos(x)| \le 3 \cdot 1 \cdot 1 = 3$.

Likewise,
$$|f''(x)| = |6\sin(x)\cos^2(x) - 3\sin^3(x)| \le (\Delta)$$
 $|6\sin(x)\cos^2(x)| + |3\sin^3(x)| = 6|\sin(x)| \cdot |\cos(x)|^2 + 3|\sin(x)|^3 \le 6 \cdot 1 \cdot 1^2 + 3 \cdot 1^3 = 9.$

Here, (Δ) is the Triangle Inequality.

3. If A_7 is the Fourier coefficient defined above, show that

$$A_7 = \frac{-3}{7} \int_0^{2\pi} \sin(x)^2 \cos(x) \cdot \sin(7x) \ dx.$$

(Hint: Use integration by parts). Generalize this to show that, for any n = 1, 2, 3, ...,

$$A_n = \frac{-3}{n} \int_0^{2\pi} \sin(x)^2 \cos(x) \cdot \sin(nx) \, dx, \quad \text{and} \quad B_n = \frac{3}{n} \int_0^{2\pi} \sin(x)^2 \cos(x) \cdot \cos(nx) \, dx.$$

Solution: We apply integration by parts. Let $f(x) = \sin^3(x)$, and suppose $g'(x) = \cos(nx)$. Thus, $f'(x) = \frac{1}{\pi^2} 3\sin^2(x)\cos(x)$ and $g(x) = \frac{1}{n}\sin(nx)$, so that

$$\begin{aligned} A_n &= \int_0^{2\pi} \sin^3(x) \cdot \cos(nx) \, dx &= \int_0^{2\pi} f(x) \cdot g'(x) \, dx \\ &= f(x) \cdot g(x) \Big|_{x=0}^{x=2\pi} - \int_0^{2\pi} f'(x) \cdot g(x) \, dx \\ &= \frac{1}{n} \sin^3(x) \cdot \sin(nx) \Big|_{x=0}^{x=2\pi} - \frac{1}{n} \int_0^{2\pi} 3\sin(x)^2 \cos(x) \cdot \sin(nx) \, dx \\ &= \frac{1}{n} \left(\sin^3(2\pi) \cdot \sin(2n\pi) - \sin^3(0) \cdot \sin(0) \right) - \frac{3}{n} \int_0^{2\pi} \sin(x)^2 \cos(x) \cdot \sin(nx) \, dx \\ &= \frac{3}{n} \int_0^{2\pi} \sin(x)^2 \cos(x) \cdot \sin(nx) \, dx. \end{aligned}$$

To see equality (P), observe that $\sin^3(2\pi) = \sin^3(0)$ and $\sin(2n\pi) = \sin(0)$; hence, $\sin^3(2\pi) \cdot \sin(2n\pi) = \sin^3(0) \cdot \sin(0)$.

Likewise, if $g'(x)=\sin(nx),$ then $g(x)=\frac{-1}{n}\cos(nx),$ so that

$$B_{n} = \int_{0}^{2\pi} \sin^{3}(x) \cdot \sin(nx) \, dx = \int_{0}^{2\pi} f(x) \cdot g'(x) \, dx$$

$$= f(x) \cdot g(x) \Big|_{x=0}^{x=2\pi} - \int_{0}^{2\pi} f'(x) \cdot g(x) \, dx$$

$$= \frac{-1}{n} \sin^{3}(x) \cdot \cos(nx) \Big|_{x=0}^{x=2\pi} + \frac{1}{n} \int_{0}^{2\pi} 3\sin(x)^{2} \cos(x) \cdot \cos(nx) \, dx$$

$$= \frac{-1}{n} \left(\sin^{3}(2\pi) \cdot \cos(2n\pi) - \sin^{3}(0) \cdot \cos(0) \right) + \frac{3}{n} \int_{0}^{2\pi} \sin(x)^{2} \cos(x) \cdot \cos(nx) \, dx$$

$$= \frac{3}{n} \int_{0}^{2\pi} \sin(x)^{2} \cos(x) \cdot \cos(nx) \, dx,$$

where equality (P) is because $\sin^3(2\pi) \cdot \cos(2n\pi) = \sin^3(0) \cdot \cos(0)$.

4. Conclude that, for all n = 1, 2, 3, ...,

$$|A_n| \leq \frac{6\pi}{n}$$
, and $|B_n| \leq \frac{6\pi}{n}$

(For example, $A_{60} < \frac{\pi}{10}$.) Hence, there is 'little energy' in the 'high frequency' vibrations. (**Hint:** Do <u>not</u> explicitly compute any integrals. Instead, combine #2 and #3, and use the Comparison Properties of the Integral from §5.2 of the text).

Solution: From #3, we know that $A_n = \frac{-1}{n} \int_0^{2\pi} f'(x) \cdot \sin(nx) dx$. From #2, we know that $|f'(x)| \leq 3$ for all $x \in [0, 2\pi]$. Thus,

$$|A_n| = \left| \frac{-1}{n} \int_0^{2\pi} f'(x) \cdot \sin(nx) \, dx \right| = \frac{1}{n} \left| \int_0^{2\pi} f'(x) \cdot \sin(nx) \, dx \right|$$

$$\leq_{(*)} \frac{1}{n} \int_0^{2\pi} \left| f'(x) \cdot \sin(nx) \right| \, dx = \frac{1}{n} \int_0^{2\pi} \left| f'(x) \right| \cdot |\sin(nx)| \, dx$$

$$\leq \frac{1}{n} \int_0^{2\pi} 3 \cdot 1 \, dx = \frac{1}{n} 6\pi = \frac{6\pi}{n}.$$

Here, inequality (*) is by Comparison Property #8 on page 387 of $\S5.2.$

The argument for B_n is the same, only with $\cos(nx)$ instead of $\sin(nx)$.

5. Repeat the argument from #3 to show that for any $n = 1, 2, 3, \ldots$,

$$A_n = \frac{-3}{n^2} \int_0^{2\pi} \left(2\sin(x)\cos^2(x) - \sin^3(x) \right) \cdot \cos(nx) \, dx,$$

and
$$B_n = \frac{-3}{n^2} \int_0^{2\pi} \left(2\sin(x)\cos^2(x) - \sin^3(x) \right) \cdot \sin(nx) \, dx.$$

Solution: We apply integration by parts. Let $h(x) = \sin^2(x)\cos(x)$, and suppose $g'(x) = \sin(nx)$. Thus, $h'(x) = \frac{1}{\pi} 2\sin(x)\cos^2(x) - \sin^2(x)$ and $g(x) = \frac{-1}{n}\cos(nx)$, so that

$$\begin{split} \int_{0}^{2\pi} \sin^{2}(x) \cos(x) \cdot \sin(nx) \, dx \\ &= \int_{0}^{2\pi} h(x) \cdot g'(x) \, dx = h(x) \cdot g(x) \Big|_{x=0}^{x=2\pi} - \int_{0}^{2\pi} h'(x) \cdot g(x) \, dx \\ &= \frac{-1}{n} \sin^{2}(x) \cos(x) \cdot \cos(nx) \Big|_{x=0}^{x=2\pi} + \frac{1}{n} \int_{0}^{2\pi} \left(2\sin(x) \cos^{2}(x) - \sin^{2}(x) \right) \cdot \cos(nx) \, dx \\ &= \frac{1}{n} \left(\sin^{2}(2\pi) \cos(2\pi) \cdot \sin(2n\pi) - \sin^{2}(0) \cos(0) \cdot \sin(0) \right) \\ &\quad + \frac{1}{n} \int_{0}^{2\pi} \left(2\sin(x) \cos^{2}(x) - \sin^{2}(x) \right) \cdot \cos(nx) \, dx \\ &= \frac{1}{n} \int_{0}^{2\pi} \left(2\sin(x) \cos^{2}(x) - \sin^{2}(x) \right) \cdot \cos(nx) \, dx \end{split}$$

where equality (P) is because $\sin^2(2\pi)\cos(2\pi)\cdot\sin(2n\pi) = \sin^2(0)\cos(0)\cdot\sin(0)$. Thus, $A_n \frac{-3}{(by\#3)} - \frac{-3}{n} \int_0^{2\pi} \sin(x)^2\cos(x)\cdot\sin(nx) \, dx = -\frac{-3}{n^2} \int_0^{2\pi} \left(2\sin(x)\cos^2(x) - \sin^3(x)\right)\cdot\cos(nx) \, dx.$ The proof for B_n is similar. 6. Repeat the argument from #4 to conclude that, for all $n = 1, 2, 3, \ldots$,

$$|A_n| \leq \frac{18\pi}{n^2}$$
 and $|B_n| \leq \frac{18\pi}{n^2}$.

(For example, $A_{60} < \frac{\pi}{200}$.) Hence, there is *very* little energy in the 'high frequency' vibrations. Solution: From #5, we know that $A_n = \frac{-1}{n^2} \int_0^{2\pi} f''(x) \cdot \cos(nx) dx$. From #2, we know that $|f''(x)| \le 9$ for all $x \in [0, 2\pi]$. Thus,

$$\begin{aligned} |A_n| &= \left| \frac{-1}{n^2} \int_0^{2\pi} f''(x) \cdot \cos(nx) \, dx \right| &= \frac{1}{n^2} \left| \int_0^{2\pi} f''(x) \cdot \cos(nx) \, dx \right| \\ &\leq_{(*)} \quad \frac{1}{n^2} \int_0^{2\pi} \left| f''(x) \cdot \cos(nx) \right| \, dx &= \frac{1}{n^2} \int_0^{2\pi} \left| f''(x) \right| \cdot \left| \cos(nx) \right| \, dx \\ &\leq \quad \frac{1}{n^2} \int_0^{2\pi} 9 \cdot 1 \, dx &= \frac{1}{n^2} 18\pi &= \frac{18\pi}{n^2}. \end{aligned}$$

Here, inequality (*) is by Comparison Property #8 on page 387 of $\S5.2$.

The argument for B_n is the same, only with sin(nx) instead of cos(nx).

- 7. A function $f:[0,2\pi] \longrightarrow \mathbb{R}$ is called **smoothly periodic** if:
 - $f(2\pi) = f(0);$
 - $f'(2\pi) = f'(0);$
 - $f''(2\pi) = f''(0);$
 -and, for all k, $f^{(k)}(2\pi) = f^{(k)}(0)$, where $f^{(k)}$ is the kth derivative of f(x).

(For example, $f(x) = \sin^2(x)$ is smoothly periodic.)

Generalize the previous argument: Show that, if f is any smoothly periodic function, then for any $k = 1, 2, 3, \ldots$,

$$A_n = \frac{\pm 1}{n^k} \int_0^{2\pi} f^{(k)}(x) \cdot \mathbf{C}_k(nx) \, dx, \quad \text{and} \quad B_n = \frac{\pm 1}{n^k} \int_0^{2\pi} f^{(k)}(x) \cdot \mathbf{S}_k(nx) \, dx.$$

Here, if k is even, then we define $\mathbf{C}_k(x) = \cos(x)$ and $\mathbf{S}_k(x) = \sin(x)$; on the other hand, if k is odd, then we define $\mathbf{C}_k(x) = \sin(x)$ and $\mathbf{S}_k(x) = \cos(x)$.

(**Hint:** Proceed by induction on k)

Conclude that, for any k = 1, 2, 3, ... there is some constant ℓ_k such that

$$|A_n| \leq \frac{2\pi\ell_k}{n^k}$$
 and $|B_n| \leq \frac{2\pi\ell_k}{n^k}$

Give a physical interpretation of this result.

Solution: We prove the result by induction on k. Question #3 showed it's true for k = 1 and question #5 showed it when k = 2. Suppose it is true for k; we want to prove it for (k + 1).

We apply integration by parts. Let $h(x) = f^{(k)}$ and suppose $g'(x) = \mathbf{C}_k(nx)$. Then $h'(x) = f^{(k+1)}(x)$ and $g(x) = \frac{\pm 1}{n} \mathbf{C}_{k+1}(nx)$. Thus,

$$\begin{aligned} A_n &= \frac{\pm 1}{n^k} \int_0^{2\pi} f^{(k)}(x) \cdot \mathbf{C}_k(nx) \, dx &= \frac{\pm 1}{n^k} \int_0^{2\pi} h(x) \cdot g'(x) \, dx \\ &= \frac{\pm 1}{n^k} \left(h(x) \cdot g(x) \Big|_{x=0}^{x=2\pi} \mp \int_0^{2\pi} h'(x) \cdot g(x) \, dx \right) \\ &= \frac{\pm 1}{n^k} \left(\frac{1}{n} f^{(k)}(x) \mathbf{C}_{k+1}(nx) \Big|_{x=0}^{x=2\pi} \mp \frac{1}{n^{k+1}} \int_0^{2\pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(nx) \, dx \right) \\ &= \frac{\pm 1}{n^{k+1}} \left(f^{(k)}(2\pi) \mathbf{C}_{k+1}(2n\pi) - f^{(k)}(0) \mathbf{C}_{k+1}(0) \mp \int_0^{2\pi} f^{(k+1)} \mathbf{C}_{k+1}(nx) \, dx \right) \\ &= \frac{\pm 1}{n^{k+1}} \int_0^{2\pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(nx) \, dx \end{aligned}$$

Here, (H) is by induction hypothesis, and (P) is because f is smoothly periodic, so that

$$f^{(k)}(2\pi)\mathbf{C}_{k+1}(2n\pi) = f^{(k)}(0)\mathbf{C}_{k+1}(0).$$

Now, since $f^{(k+1)}$ and \mathbf{C}_{k+1} are continuous, there is some constant $\ell_{k+1} > 0$ so that $\left| f^{(k+1)}(x) \mathbf{C}_{k+1}(nx) \right| \leq \ell_{k+1}$ for all $x \in [0, 2\pi]$. Thus,

$$\begin{aligned} |A_n| &= \left| \frac{\pm 1}{n^{k+1}} \int_0^{2\pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(nx) \, dx \right| &= \frac{1}{n^{k+1}} \left| \int_0^{2\pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(nx) \, dx \right| \\ &\leq \frac{1}{n^{k+1}} \int_0^{2\pi} \left| f^{(k+1)}(x) \mathbf{C}_{k+1}(nx) \right| \, dx &\leq \frac{1}{n^{k+1}} \int_0^{2\pi} \ell_{k+1} \, dx \\ &= \frac{1}{n^{k+1}} 2\pi \ell_{k+1}. \end{aligned}$$

The argument for B_n is the same; just exchange the roles of C_k and S_k .

Physical interpretation: If f(x) is a smoothly periodic function, then the Fourier coefficients of f(x) become small faster than $\frac{1}{n^{k+1}}$, for *any* choice of k. In other words, they get small very, *very* quickly as $n \rightarrow \infty$. This means that the 'high frequency' component of f(x) contains very little energy.