Math 110 -Assignment \#6

Due: Monday, February 10

- Justify your answers. Show all steps in your computations.
- Please indicate your final answer by putting a box around it.
- Please write neatly and legibly. Illegible answers will not be graded.
- Math 110A: When finished, please give your assignment to Stefan or leave it under his door.
- Math 110B: When finished, please place your assignment in slot marked Math 110 in the big white box outside the Math Department Office in Lady Eaton College.

Let $f:[0,2 \pi] \longrightarrow \mathbb{R}$ be a function. For $n=1,2,3, \ldots$, we define the Fourier Coefficients:

$$
A_{n}=\int_{0}^{2 \pi} f(x) \cdot \cos (n x) d x, \quad \text { and } \quad B_{n}=\int_{0}^{2 \pi} f(x) \cdot \sin (n x) d x
$$

For example, if $f(x)=\sin ^{3}(x)$, and $n=7$, then

$$
A_{7}=\int_{0}^{2 \pi} \sin ^{3}(x) \cdot \cos (7 x) d x, \quad \text { and } \quad B_{7}=\int_{0}^{2 \pi} \sin ^{3}(x) \cdot \sin (7 x) d x
$$

Physically speaking, if $f(x)$ describes the vibration of a string, then A_{7} and B_{7} measure the amount of energy vibrating at 7 cycles per second (ie. 7 Hz). Likewise, A_{8} and B_{8} measure the amount of energy vibrating at 8 Hz , etc.

Suppose $f(x)=\sin ^{3}(x)$.

1. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: $\quad f^{\prime}(x)=3 \sin ^{2}(x) \cos (x)$ and $f^{\prime \prime}(x)=6 \sin (x) \cos ^{2}(x)-3 \sin ^{3}(x)$.
2. Show that $\left|f^{\prime}(x)\right| \leq 3$ for all $x \in[0,2 \pi]$, and $\left|f^{\prime}(x)\right| \leq 9$ for all $x \in[0,2 \pi]$.

Solution: $\quad|\sin (x)| \leq 1$ and $|\cos (x)| \leq 1$ for all x. Thus, $\left|f^{\prime}(x)\right|=\left|3 \sin ^{2}(x) \cos (x)\right|=$ $3|\sin (x)| \cdot|\cos (x)| \leq 3 \cdot 1 \cdot 1=3$.
Likewise, $\left|f^{\prime \prime}(x)\right|=\left|6 \sin (x) \cos ^{2}(x)-3 \sin ^{3}(x)\right| \quad \leq_{(\Delta)} \quad\left|6 \sin (x) \cos ^{2}(x)\right|+\left|3 \sin ^{3}(x)\right|=$ $6|\sin (x)| \cdot|\cos (x)|^{2}+3|\sin (x)|^{3} \leq 6 \cdot 1 \cdot 1^{2}+3 \cdot 1^{3}=9$.

Here, (Δ) is the Triangle Inequality.
3. If A_{7} is the Fourier coefficient defined above, show that

$$
A_{7}=\frac{-3}{7} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \sin (7 x) d x
$$

(Hint: Use integration by parts). Generalize this to show that, for any $n=1,2,3, \ldots$,

$$
A_{n}=\frac{-3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \sin (n x) d x, \quad \text { and } \quad B_{n}=\frac{3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \cos (n x) d x
$$

Solution: We apply integration by parts. Let $f(x)=\sin ^{3}(x)$, and suppose $g^{\prime}(x)=\cos (n x)$. Thus, $f^{\prime}(x) \overline{\overline{\# 1}} 3 \sin ^{2}(x) \cos (x)$ and $g(x)=\frac{1}{n} \sin (n x)$, so that

$$
\begin{aligned}
A_{n} & =\int_{0}^{2 \pi} \sin ^{3}(x) \cdot \cos (n x) d x=\int_{0}^{2 \pi} f(x) \cdot g^{\prime}(x) d x \\
& =\left.f(x) \cdot g(x)\right|_{x=0} ^{x=2 \pi}-\int_{0}^{2 \pi} f^{\prime}(x) \cdot g(x) d x \\
& =\left.\frac{1}{n} \sin ^{3}(x) \cdot \sin (n x)\right|_{x=0} ^{x=2 \pi}-\frac{1}{n} \int_{0}^{2 \pi} 3 \sin (x)^{2} \cos (x) \cdot \sin (n x) d x \\
& =\frac{1}{n}\left(\sin ^{3}(2 \pi) \cdot \sin (2 n \pi)-\sin ^{3}(0) \cdot \sin (0)\right)-\frac{3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \sin (n x) d x \\
& \overline{\overline{(P)}}-\frac{3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \sin (n x) d x
\end{aligned}
$$

To see equality (P), observe that $\sin ^{3}(2 \pi)=\sin ^{3}(0)$ and $\sin (2 n \pi)=\sin (0)$; hence, $\sin ^{3}(2 \pi) \cdot \sin (2 n \pi)=\sin ^{3}(0) \cdot \sin (0)$.
Likewise, if $g^{\prime}(x)=\sin (n x)$, then $g(x)=\frac{-1}{n} \cos (n x)$, so that

$$
\begin{aligned}
B_{n} & =\int_{0}^{2 \pi} \sin ^{3}(x) \cdot \sin (n x) d x=\int_{0}^{2 \pi} f(x) \cdot g^{\prime}(x) d x \\
& =\left.f(x) \cdot g(x)\right|_{x=0} ^{x=2 \pi}-\int_{0}^{2 \pi} f^{\prime}(x) \cdot g(x) d x \\
& =\left.\frac{-1}{n} \sin ^{3}(x) \cdot \cos (n x)\right|_{x=0} ^{x=2 \pi}+\frac{1}{n} \int_{0}^{2 \pi} 3 \sin (x)^{2} \cos (x) \cdot \cos (n x) d x \\
& =\frac{-1}{n}\left(\sin ^{3}(2 \pi) \cdot \cos (2 n \pi)-\sin ^{3}(0) \cdot \cos (0)\right)+\frac{3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \cos (n x) d x \\
& \overline{\overline{(P)}} \frac{3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \cos (n x) d x
\end{aligned}
$$

where equality (P) is because $\sin ^{3}(2 \pi) \cdot \cos (2 n \pi)=\sin ^{3}(0) \cdot \cos (0)$.
4. Conclude that, for all $n=1,2,3, \ldots$,

$$
\left|A_{n}\right| \leq \frac{6 \pi}{n}, \quad \text { and } \quad\left|B_{n}\right| \leq \frac{6 \pi}{n}
$$

(For example, $A_{60}<\frac{\pi}{10}$.) Hence, there is 'little energy' in the 'high frequency' vibrations. (Hint: Do not explicitly compute any integrals. Instead, combine \#2 and \#3, and use the Comparison Properties of the Integral from §5.2 of the text).
Solution: From \#3, we know that $A_{n}=\frac{-1}{n} \int_{0}^{2 \pi} f^{\prime}(x) \cdot \sin (n x) d x$. From \#2, we know that $\left|f^{\prime}(x)\right| \leq 3$ for all $x \in[0,2 \pi]$. Thus,

$$
\begin{aligned}
\left|A_{n}\right| & =\left|\frac{-1}{n} \int_{0}^{2 \pi} f^{\prime}(x) \cdot \sin (n x) d x\right|=\frac{1}{n}\left|\int_{0}^{2 \pi} f^{\prime}(x) \cdot \sin (n x) d x\right| \\
& \leq \frac{1}{n} \int_{0}^{2 \pi}\left|f^{\prime}(x) \cdot \sin (n x)\right| d x=\frac{1}{n} \int_{0}^{2 \pi}\left|f^{\prime}(x)\right| \cdot|\sin (n x)| d x \\
& \leq \frac{1}{n} \int_{0}^{2 \pi} 3 \cdot 1 d x=\frac{1}{n} 6 \pi=\frac{6 \pi}{n}
\end{aligned}
$$

Here, inequality $(*)$ is by Comparison Property $\# 8$ on page 387 of $\S 5.2$.
The argument for B_{n} is the same, only with $\cos (n x)$ instead of $\sin (n x)$.
5. Repeat the argument from $\# 3$ to show that for any $n=1,2,3, \ldots$,

$$
\begin{aligned}
A_{n} & =\frac{-3}{n^{2}} \int_{0}^{2 \pi}\left(2 \sin (x) \cos ^{2}(x)-\sin ^{3}(x)\right) \cdot \cos (n x) d x \\
\text { and } \quad B_{n} & =\frac{-3}{n^{2}} \int_{0}^{2 \pi}\left(2 \sin (x) \cos ^{2}(x)-\sin ^{3}(x)\right) \cdot \sin (n x) d x
\end{aligned}
$$

Solution: We apply integration by parts. Let $h(x)=\sin ^{2}(x) \cos (x)$, and suppose $g^{\prime}(x)=\sin (n x)$. Thus, $h^{\prime}(x) \overline{\overline{\# 1}} 2 \sin (x) \cos ^{2}(x)-\sin ^{2}(x)$ and $g(x)=\frac{-1}{n} \cos (n x)$, so that

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sin ^{2}(x) \cos (x) \cdot \sin (n x) d x \\
& \begin{aligned}
= & \int_{0}^{2 \pi} h(x) \cdot g^{\prime}(x) d x=\left.h(x) \cdot g(x)\right|_{x=0} ^{x=2 \pi}-\int_{0}^{2 \pi} h^{\prime}(x) \cdot g(x) d x \\
= & \left.\frac{-1}{n} \sin ^{2}(x) \cos (x) \cdot \cos (n x)\right|_{x=0} ^{x=2 \pi}+\frac{1}{n} \int_{0}^{2 \pi}\left(2 \sin (x) \cos ^{2}(x)-\sin ^{2}(x)\right) \cdot \cos (n x) d x \\
= & \frac{1}{n}\left(\sin ^{2}(2 \pi) \cos (2 \pi) \cdot \sin (2 n \pi)-\sin ^{2}(0) \cos (0) \cdot \sin (0)\right) \\
& \quad+\frac{1}{n} \int_{0}^{2 \pi}\left(2 \sin (x) \cos ^{2}(x)-\sin ^{2}(x)\right) \cdot \cos (n x) d x
\end{aligned} \\
& \overline{\overline{(\mathrm{P})}} \frac{1}{n} \int_{0}^{2 \pi}\left(2 \sin (x) \cos ^{2}(x)-\sin ^{2}(x)\right) \cdot \cos (n x) d x .
\end{aligned}
$$

where equality (P) is because $\sin ^{2}(2 \pi) \cos (2 \pi) \cdot \sin (2 n \pi)=\sin ^{2}(0) \cos (0) \cdot \sin (0)$. Thus,
$A_{n} \overline{\overline{\text { (by \#3) }}} \frac{-3}{n} \int_{0}^{2 \pi} \sin (x)^{2} \cos (x) \cdot \sin (n x) d x=\frac{-3}{n^{2}} \int_{0}^{2 \pi}\left(2 \sin (x) \cos ^{2}(x)-\sin ^{3}(x)\right) \cdot \cos (n x) d x$.
The proof for B_{n} is similar.
6. Repeat the argument from $\# 4$ to conclude that, for all $n=1,2,3, \ldots$,

$$
\left|A_{n}\right| \leq \frac{18 \pi}{n^{2}} \quad \text { and } \quad\left|B_{n}\right| \leq \frac{18 \pi}{n^{2}}
$$

(For example, $A_{60}<\frac{\pi}{200}$.) Hence, there is very little energy in the 'high frequency' vibrations. Solution: From \#5, we know that $A_{n}=\frac{-1}{n^{2}} \int_{0}^{2 \pi} f^{\prime \prime}(x) \cdot \cos (n x) d x$. From \#2, we know that $\left|f^{\prime \prime}(x)\right| \leq 9$ for all $x \in[0,2 \pi]$. Thus,

$$
\begin{aligned}
\left|A_{n}\right| & =\left|\frac{-1}{n^{2}} \int_{0}^{2 \pi} f^{\prime \prime}(x) \cdot \cos (n x) d x\right|=\frac{1}{n^{2}}\left|\int_{0}^{2 \pi} f^{\prime \prime}(x) \cdot \cos (n x) d x\right| \\
& \leq \frac{1}{\left(_{*}\right.} \int_{0}^{2 \pi}\left|f^{\prime \prime}(x) \cdot \cos (n x)\right| d x=\frac{1}{n^{2}} \int_{0}^{2 \pi}\left|f^{\prime \prime}(x)\right| \cdot|\cos (n x)| d x \\
& \leq \frac{1}{n^{2}} \int_{0}^{2 \pi} 9 \cdot 1 d x=\frac{1}{n^{2}} 18 \pi=\frac{18 \pi}{n^{2}}
\end{aligned}
$$

Here, inequality $(*)$ is by Comparison Property $\# 8$ on page 387 of $\S 5.2$.
The argument for B_{n} is the same, only with $\sin (n x)$ instead of $\cos (n x)$.
7. A function $f:[0,2 \pi] \longrightarrow \mathbb{R}$ is called smoothly periodic if:

- $f(2 \pi)=f(0)$;
- $f^{\prime}(2 \pi)=f^{\prime}(0)$;
- $f^{\prime \prime}(2 \pi)=f^{\prime \prime}(0)$;
-and, for all $k, \quad f^{(k)}(2 \pi)=f^{(k)}(0)$, where $f^{(k)}$ is the k th derivative of $f(x)$.
(For example, $f(x)=\sin ^{2}(x)$ is smoothly periodic.)
Generalize the previous argument: Show that, if f is any smoothly periodic function, then for any $k=1,2,3, \ldots$,

$$
A_{n}=\frac{ \pm 1}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(x) \cdot \mathbf{C}_{k}(n x) d x, \quad \text { and } \quad B_{n}=\frac{ \pm 1}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(x) \cdot \mathbf{S}_{k}(n x) d x
$$

Here, if k is even, then we define $\mathbf{C}_{k}(x)=\cos (x)$ and $\mathbf{S}_{k}(x)=\sin (x)$; on the other hand, if k is odd, then we define $\mathbf{C}_{k}(x)=\sin (x)$ and $\mathbf{S}_{k}(x)=\cos (x)$.
(Hint: Proceed by induction on k)
Conclude that, for any $k=1,2,3, \ldots$ there is some constant ℓ_{k} such that

$$
\left|A_{n}\right| \leq \frac{2 \pi \ell_{k}}{n^{k}} \quad \text { and } \quad\left|B_{n}\right| \leq \frac{2 \pi \ell_{k}}{n^{k}}
$$

Give a physical interpretation of this result.

Solution: We prove the result by induction on k. Question \#3 showed it's true for $k=1$ and question $\# 5$ showed it when $k=2$. Suppose it is true for k; we want to prove it for $(k+1)$.
We apply integration by parts. Let $h(x)=f^{(k)}$ and suppose $g^{\prime}(x)=\mathbf{C}_{k}(n x)$. Then $h^{\prime}(x)=$ $f^{(k+1)}(x)$ and $g(x)=\frac{ \pm 1}{n} \mathbf{C}_{k+1}(n x)$. Thus,

$$
\begin{aligned}
A_{n} & \overline{\overline{(\mathrm{HI})}} \frac{ \pm 1}{n^{k}} \int_{0}^{2 \pi} f^{(k)}(x) \cdot \mathbf{C}_{k}(n x) d x=\frac{ \pm 1}{n^{k}} \int_{0}^{2 \pi} h(x) \cdot g^{\prime}(x) d x \\
& =\frac{ \pm 1}{n^{k}}\left(\left.h(x) \cdot g(x)\right|_{x=0} ^{x=2 \pi} \mp \int_{0}^{2 \pi} h^{\prime}(x) \cdot g(x) d x\right) \\
& =\frac{ \pm 1}{n^{k}}\left(\left.\frac{1}{n} f^{(k)}(x) \mathbf{C}_{k+1}(n x)\right|_{x=0} ^{x=2 \pi} \mp \frac{1}{n^{k+1}} \int_{0}^{2 \pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(n x) d x\right) \\
& =\frac{ \pm 1}{n^{k+1}}\left(f^{(k)}(2 \pi) \mathbf{C}_{k+1}(2 n \pi)-f^{(k)}(0) \mathbf{C}_{k+1}(0) \mp \int_{0}^{2 \pi} f^{(k+1)} \mathbf{C}_{k+1}(n x) d x\right) \\
& \overline{\overline{(\mathrm{P})}} \frac{ \pm 1}{n^{k+1}} \int_{0}^{2 \pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(n x) d x
\end{aligned}
$$

Here, (H) is by induction hypothesis, and (P) is because f is smoothly periodic, so that

$$
f^{(k)}(2 \pi) \mathbf{C}_{k+1}(2 n \pi)=f^{(k)}(0) \mathbf{C}_{k+1}(0)
$$

Now, since $f^{(k+1)}$ and \mathbf{C}_{k+1} are continuous, there is some constant $\ell_{k+1}>0$ so that $\left|f^{(k+1)}(x) \mathbf{C}_{k+1}(n x)\right| \leq \ell_{k+1}$ for all $x \in[0,2 \pi]$. Thus,

$$
\begin{aligned}
\left|A_{n}\right| & =\left|\frac{ \pm 1}{n^{k+1}} \int_{0}^{2 \pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(n x) d x\right|=\frac{1}{n^{k+1}}\left|\int_{0}^{2 \pi} f^{(k+1)}(x) \mathbf{C}_{k+1}(n x) d x\right| \\
& \leq \frac{1}{n^{k+1}} \int_{0}^{2 \pi}\left|f^{(k+1)}(x) \mathbf{C}_{k+1}(n x)\right| d x \leq \frac{1}{n^{k+1}} \int_{0}^{2 \pi} \ell_{k+1} d x \\
& =\frac{1}{n^{k+1}} 2 \pi \ell_{k+1}
\end{aligned}
$$

The argument for B_{n} is the same; just exchange the roles of \mathbf{C}_{k} and \mathbf{S}_{k}.
Physical interpretation: If $f(x)$ is a smoothly periodic function, then the Fourier coefficients of $f(x)$ become small faster than $\frac{1}{n^{k+1}}$, for any choice of k. In other words, they get small very, very quickly as $n \rightarrow \infty$. This means that the 'high frequency' component of $f(x)$ contains very little energy.

