
Mathematics 110 – Calculus of one variable
Trent University 2002-2003

Assignment #10

Due: Monday, 7 April, 2003

Series business

Your task, should you choose to undertake it, will be to show that:
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1. Verify the following trigonometric identity. (So long as x is not an integer multiple of
π anyway!) [2]
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Hint: Use common trig identities and the fact that for any t, cos(t) = sin

(
t+ π

2

)
.

2. Verify the following trigonometric summation formula for m ≥ 1. [2]
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Hint: Apply the identity from question 1 repeatedly, starting from 1 =

1
sin2

(
π
2

) .

3. Verify the following limit formula, where k ≥ 0 is fixed. [2]

lim
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)
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Hint: This is really just (a version of) limt→0
sin(t)
t

= 0 . . .

4. Take the limit as m→∞ of the identity in 2, and use 3 to show the following. [2]
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5. Use 4 and some algebra to check that
∞∑
n=1

1
n2

=
π2

6

is true. [2]
Hint: Split up

∑∞
n=1

1
n2 into the sums of the terms for even and odd n respectively and

try to rewrite the sum of the terms for even n.

Bonus. A major assumption has been made without proper justification in one of the
steps outlined above. What is it? [1]


