Mathematics 110 - Calculus of one variable

Trent University 2002-2003
Assignment \#10
Due: Monday, 7 April, 2003

Series business

Your task, should you choose to undertake it, will be to show that:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=\frac{\pi^{2}}{6}
$$

1. Verify the following trigonometric identity. (So long as x is not an integer multiple of π anyway!) [2]

$$
\frac{1}{\sin ^{2}(x)}=\frac{1}{4}\left(\frac{1}{\sin ^{2}\left(\frac{x}{2}\right)}+\frac{1}{\sin ^{2}\left(\frac{\pi+x}{2}\right)}\right)
$$

Hint: Use common trig identities and the fact that for any $t, \cos (t)=\sin \left(t+\frac{\pi}{2}\right)$.
2. Verify the following trigonometric summation formula for $m \geq 1$. [2]

$$
1=\frac{2}{4^{m}} \sum_{k=0}^{2^{m-1}-1} \frac{1}{\sin ^{2}\left(\frac{(2 k+1) \pi}{2^{m+1}}\right)}
$$

Hint: Apply the identity from question 1 repeatedly, starting from $1=\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}$.
3. Verify the following limit formula, where $k \geq 0$ is fixed. [2]

$$
\lim _{m \rightarrow \infty} 2^{m} \sin \left(\frac{(2 k+1) \pi}{2^{m+1}}\right)=\frac{(2 k+1) \pi}{2}
$$

Hint: This is really just (a version of) $\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=0 \ldots$
4. Take the limit as $m \rightarrow \infty$ of the identity in $\mathbf{2}$, and use $\mathbf{3}$ to show the following. [2]

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

5. Use 4 and some algebra to check that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

is true. [2]
Hint: Split up $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ into the sums of the terms for even and odd n respectively and try to rewrite the sum of the terms for even n.
Bonus. A major assumption has been made without proper justification in one of the steps outlined above. What is it? [1]

