Mathematics 110 - Calculus of one variable

Trent University, 2001-2002
Test \#2
Friday, 8 February, 2002
Time: 50 minutes

1. Compute any three of the integrals a-e. $\quad[12=3 \times 4$ ea. $]$
a. $\int_{-\pi / 2}^{\pi / 2} \cos ^{3}(x) d x$
b. $\int x^{2} \ln (x) d x$
c. $\int_{0}^{1}\left(e^{x}\right)^{2} d x$
d. $\int \frac{e^{2 x} \ln \left(e^{2 x}+1\right)}{e^{2 x}+1} d x$
e. $\int_{1}^{e}(\ln (x))^{2} d x$
2. Do any two of a-c. $[8=2 \times 4 \mathrm{ea}$. $]$
a. Compute $\int_{0}^{1}(2 x+3) d x$ using the Right-hand Rule.
b. Compute $\frac{d y}{d x}$ if $y=\int_{0}^{x^{2}} \sqrt{t} d t$ (where $x \geq 0$) without evaluating the integral.
c. Compute $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ by interpreting it as an area.
3. Water is poured at a rate of $1 \mathrm{~m}^{3} / \mathrm{min}$ into a conical tank (set up point down) 2 m high and with radius 1 m at the top. How quickly is the water rising in the tank at the instant that it is 1 m deep over the tip of the cone? [8]
(The volume of a cone of height h and radius r is $\frac{1}{3} \pi r^{2} h$.)
4. Consider the region in the first quadrant with upper boundary $y=x^{2}$ and lower boundary $y=x^{3}$, and also the solid obtained by rotating this region about the y-axis.
a. Sketch the region and find its area. [4]
b. Sketch the solid and find its volume. [7]
c. What is the average area of either a washer or a shell (your pick!) for the solid? [1]
