Mathematics 110 – Calculus of one variable

Trent University, 2001-2002

Test #2 Friday, 8 February, 2002 Time: 50 minutes

1. Compute any three of the integrals **a-e**. $[12 = 3 \times 4 \text{ ea.}]$

a.
$$\int_{-\pi/2}^{\pi/2} \cos^3(x) dx$$
 b. $\int x^2 \ln(x) dx$ **c.** $\int_0^1 (e^x)^2 dx$
d. $\int \frac{e^{2x} \ln(e^{2x} + 1)}{e^{2x} + 1} dx$ **e.** $\int_1^e (\ln(x))^2 dx$

2. Do any *two* of **a-c**. $[8 = 2 \times 4 \ ea.]$

- **a.** Compute $\int_{0}^{1} (2x+3) dx$ using the Right-hand Rule.
- **b.** Compute $\frac{dy}{dx}$ if $y = \int_{0}^{x^2} \sqrt{t} dt$ (where $x \ge 0$) without evaluating the integral.
- **c.** Compute $\int_{-1}^{1} \sqrt{1-x^2} dx$ by interpreting it as an area.
- **3.** Water is poured at a rate of $1 m^3/min$ into a conical tank (set up point down) 2 m high and with radius 1 m at the top. How quickly is the water rising in the tank at the instant that it is 1 m deep over the tip of the cone? [8]

(The volume of a cone of height h and radius r is $\frac{1}{3}\pi r^2 h$.)

- 4. Consider the region in the first quadrant with upper boundary $y = x^2$ and lower boundary $y = x^3$, and also the solid obtained by rotating this region about the y-axis.
 - **a.** Sketch the region and find its area. [4]
 - **b.** Sketch the solid and find its volume. [7]
 - **c.** What is the average area of either a washer or a shell (your pick!) for the solid? [1]