Mathematics 110 - Calculus of one variable

Trent University 2001-2002

Quizzes

Quiz \#1. Friday, 21 September, 2001. [15 minutes]

1. Sketch the graph of a function $f(x)$ with domain $(-1,2)$ such that $\lim _{x \rightarrow 2} f(x)=1$ but $\lim _{x \rightarrow-1} f(x)$ does not exist. [4]
2. Use the $\epsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow \pi} 3=3$. [6]

Quiz \#2. Friday, 28 September, 2001. [15 minutes]
Evaluate the following limits, if they exist.

$$
\text { 1. } \lim _{x \rightarrow-1} \frac{x+1}{x^{2}-1} \quad[5] \quad \text { 2. } \lim _{x \rightarrow 1} \frac{x+1}{x^{2}-1}
$$

Quiz \#3. Friday, 5 October, 2001. [20 minutes]

1. Is $g(x)=\left\{\begin{array}{ll}\frac{x^{2}-6 x+9}{x-3} & x \neq 3 \\ 0 & x=3\end{array}\right.$ continuous at $x=3$? [5]
2. For which values of c does $\lim _{x \rightarrow \infty} \frac{13}{c x^{2}+41}$ exist? [5]

Quiz \#3. (Late version.) Friday, 5 October, 2001. [20 minutes]

1. For which values of the constant c is the function $f(x)=\left\{\begin{array}{ll}c e^{x} & x \geq 0 \\ c-x & x<3\end{array}\right.$ continuous at $x=0$? [5]
2. Compute $\lim _{x \rightarrow \infty} \frac{(x+13)^{2}}{2 x^{2}+\frac{1}{x}}$, if it exists. [5]

Quiz \#4. Friday, 12 October, 2001. [10 minutes]

1. Use the definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{5}{7 x}$. [10]

Quiz \#5. Friday, 19 October, 2001. [17 minutes]
Compute $\frac{d y}{d x}$ for each of the following:

1. $y=\frac{2 x+1}{x^{2}} \quad[3]$
2. $y=\ln (\cos (x)) \quad$ [3]
3. $y=(x+1)^{5} e^{-5 x} \quad$ [4]

Quiz \#6. Friday, 2 November, 2001. [20 minutes]
Find $\frac{d y}{d x} \ldots$

1. ... at the point that $y=3$ and $x=1$ if $y^{2}+x y+x=13$. [4]
2. ... in terms of x if $e^{x y}=x$. [3]
3. \ldots in terms of x if $y=x^{3 x}$. [3]

Quiz \#7. Friday, 9 November, 2001. [13 minutes]

1. Find all the maxima and minima of $f(x)=x^{2} e^{-x}$ on $(-\infty, \infty)$ and determine which are absolute. [10]

Quiz \#8. Friday, 23 November, 2001. [15 minutes]

1. A spherical balloon is being inflated at a rate of $1 \mathrm{~m}^{3} / \mathrm{s}$. How is the diameter of the balloon changing at the instant that the radius of the balloon is 2 m ? [10] [The volume of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$.]
Quiz \#9. Friday, 30 November, 2001. [20 minutes]
2. Use the Right-hand Rule to compute $\int_{0}^{3}\left(2 x^{2}+1\right) d x$. [6]
[You may need to know that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.]
3. Set up and evaluate the Riemann sum for $\int_{0}^{2}(3 x+1) d x$ corresponding to the partition $x_{0}=0, x_{1}=\frac{2}{3}, x_{2}=\frac{4}{3}, x_{3}=2$, with $x_{1}^{*}=\frac{1}{3}, x_{2}^{*}=1$, and $x_{3}^{*}=\frac{5}{3} . ~[4]$
Quiz \#9. (Late version.) Friday, 30 November, 2001. [20 minutes]
4. Use the Right-hand Rule to compute $\int_{1}^{2}(x+1) d x$. [6]
[You may need to know that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.]
5. Set up and evaluate the Riemann sum for $\int_{0}^{4} x^{2} d x$ corresponding to the partition $x_{0}=0$, $x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4$, with $x_{1}^{*}=0, x_{2}^{*}=2, x_{3}^{*}=2$, and $x_{4}^{*}=4$. [4]
Quiz \#10. Friday, 7 December, 2001. [20 minutes]
Given that $\int_{1}^{4} x d x=7.5$ and $\int_{1}^{4} x^{2} d x=21$, use the properties of definite integrals to:
6. Evaluate $\int_{1}^{4}(x+1)^{2} d x$. [5]
7. Find upper and lower bounds for $\int_{1}^{4} x^{3 / 2} d x$. [5]

Quiz \#10. (Late version.) Friday, 7 December, 2001. [20 minutes]

1. Without evaluating them, put the following definite integrals in order, from smallest to largest. [5]

$$
\int_{0}^{2} \sqrt{x^{2}+1} d x \quad \int_{0}^{1} x d x \quad \int_{0}^{1} \sqrt{x^{2}+1} d x \quad \int_{0}^{1} x^{3} d x \quad \int_{0}^{2}(x+3) d x
$$

2. Write down (you need not evaluate it) a definite integral(s) representing the area of the region bounded by the curves $y=x-x^{3}$ and $y=x^{3}-x$. [5]

Quiz \#11. Friday, 11 January, 2002. [15 minutes]

1. Compute the indefinite integral $\int\left(x^{2}+x+1\right)^{3}(4 x+2) d x$. [5]
2. Find the area under the graph of $f(x)=\sin (x) \cos (x)$ for $0 \leq x \leq \frac{\pi}{2}$. [5]

Quiz \#12. Friday, 18 January, 2002. [15 minutes]

1. Compute $\int_{1}^{e} \frac{\ln \left(x^{2}\right)}{x} d x$. [5]
2. Find the area of the region between the curves $y=x^{3}-x$ and $y=x-x^{3}$. [5]

Quiz \#12. (Late version.) Friday, 18 January, 2002. [15 minutes]

1. Compute $\int_{1}^{\ln (2)} \frac{e^{x}}{e^{2 x}+1} d x$. [5]
2. Find the area of the region bounded below by the curve $y=x^{2}-1$ and above by the curve $y=\cos \left(\frac{\pi}{2} x\right)$, where $-1 \leq x \leq 1$. [5]
Quiz \#13. Friday, 25 January, 2002. [19 minutes]
3. Find the volume of the solid obtained by revolving the region in the first quadrant bounded by $y=\frac{1}{x}, y=x$, and $x=2$ about the x-axis. [10]
Quiz \#14. Friday, 1 February, 2002. [17 minutes]
4. Suppose the region bounded above by $y=1$ and below by $y=x^{2}$ is revolved about the line $x=2$. Sketch the resulting solid and find its volume. [10]
Quiz \#15. Friday, 15 February, 2002. [25 minutes]
Evaluate each of the following integrals.
5. $\int_{0}^{\pi / 4} \tan ^{2}(x) d x \quad$ [4]
6. $\int \sqrt{x^{2}+4 x+5} d x \quad[6]$

Quiz \#16. Friday, 1 March, 2002. [25 minutes]

1. Evaluate the following integral:

$$
\int \frac{x^{2}-2 x-6}{\left(x^{2}+2 x+5\right)(x-1)} d x
$$

Quiz \#17. Friday, 8 March, 2002. [25 minutes]

1. Evaluate the following integral:

$$
\int_{2}^{\infty} \frac{1}{x(x-1)^{2}} d x
$$

Quiz \#18. Friday, 15 March, 2002. [18 minutes]
Determine whether each of the following series converges or diverges.

$$
\text { 1. } \sum_{n=0}^{\infty}\left[\frac{1}{n+1}+\frac{3^{n}}{3^{n}+1}\right] \quad[4] \quad \text { 2. } \sum_{n=0}^{\infty} \frac{253}{3^{n}+1} \text { [6] }
$$

Bonus Quiz. Monday, 18 March, 2002. [15 minutes]
Compute any two of $1-3$.

1. $\lim _{t \rightarrow \infty} t e^{-t} \quad[5]$
2. $\int_{0}^{\infty} t e^{-t} d t \quad[5]$
3. $\sum_{n=0}^{\infty} \frac{1}{n^{2}+3 n+2} \quad[5]$

Quiz \#19. Friday, 22 March, 2002. [20 minutes]
Determine whether each of the following series converges or diverges.

$$
\text { 1. } \sum_{n=1}^{\infty} \frac{1}{n^{n}} \quad[5] \quad \text { 2. } \sum_{n=0}^{\infty} \frac{4 n+12}{n^{2}+6 n+13}
$$

Quiz \#19. (Alternate version.) Friday, 22 March, 2002. [20 minutes]
Consider the series

$$
\sum_{n=0}^{\infty} \frac{\arctan (n+1)}{n^{2}+2 n+2}
$$

Determine whether this series converges or diverges using:

1. The Comparison Test. [5]
2. The Integral Test. [5]

Quiz \#20. Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}+\cos (n \pi)}{n+1}$ converges absolutely, converges conditionally, or diverges. [10]

Quiz \#20. (Alternate version.) Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}+\sin \left(n \pi+\frac{\pi}{2}\right)}{n+1}$ converges absolutely, converges conditionally, or diverges. [10]
Quiz \#21. Friday, 5 April, 2002. [10 minutes]
2. Find a power series which, when it converges, equals $f(x)=\frac{3 x^{2}}{\left(1-x^{3}\right)^{2}}$. [10]

Quiz \#21. (Alternate version.) Friday, 5 April, 2002. [10 minutes]

1. Find a function which is equal to the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n!}$ (when the series converges). [10]
