Mathematics 110 – Calculus of one variable Trent University 2001-2002

QUIZZES

Quiz #1. Friday, 21 September, 2001. [15 minutes]

- 1. Sketch the graph of a function f(x) with domain (-1,2) such that $\lim_{x\to 2} f(x) = 1$ but $\lim_{x\to -1} f(x)$ does not exist. [4]
- 2. Use the $\epsilon \delta$ definition of limits to verify that $\lim_{x \to \pi} 3 = 3$. [6]

Quiz #2. Friday, 28 September, 2001. [15 minutes] Evaluate the following limits, if they exist.

1.
$$\lim_{x \to -1} \frac{x+1}{x^2-1}$$
 [5] 2. $\lim_{x \to 1} \frac{x+1}{x^2-1}$ [5]

Quiz #3. Friday, 5 October, 2001. [20 minutes]

- 1. Is $g(x) = \begin{cases} \frac{x^2 6x + 9}{x 3} & x \neq 3\\ 0 & x = 3 \end{cases}$ continuous at x = 3? [5]
- 2. For which values of c does $\lim_{x\to\infty} \frac{13}{cx^2+41}$ exist? [5]

Quiz #3. (Late version.) Friday, 5 October, 2001. [20 minutes]

- 1. For which values of the constant c is the function $f(x) = \begin{cases} ce^x & x \ge 0\\ c-x & x < 3 \end{cases}$ continuous at x = 0? [5]
- 2. Compute $\lim_{x\to\infty} \frac{(x+13)^2}{2x^2+\frac{1}{x}}$, if it exists. [5]

Quiz #4. Friday, 12 October, 2001. [10 minutes]

- 1. Use the definition of the derivative to find f'(x) if $f(x) = \frac{5}{7x}$. [10]
- Quiz #5. Friday, 19 October, 2001. [17 minutes]

Compute $\frac{dy}{dx}$ for each of the following: 1. $y = \frac{2x+1}{x^2}$ [3] 2. $y = \ln(\cos(x))$ [3] 3. $y = (x+1)^5 e^{-5x}$ [4]

Quiz #6. Friday, 2 November, 2001. [20 minutes]

Find $\frac{dy}{dx}$...

- 1. ... at the point that y = 3 and x = 1 if $y^2 + xy + x = 13$. [4]
- 2. ... in terms of x if $e^{xy} = x$. [3]
- 3. ... in terms of x if $y = x^{3x}$. [3]

Quiz #7. Friday, 9 November, 2001. [13 minutes]

1. Find all the maxima and minima of $f(x) = x^2 e^{-x}$ on $(-\infty, \infty)$ and determine which are absolute. [10]

Quiz #8. Friday, 23 November, 2001. [15 minutes]

1. A spherical balloon is being inflated at a rate of $1 m^3/s$. How is the diameter of the balloon changing at the instant that the radius of the balloon is 2 m? [10] [The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.]

Quiz #9. Friday, 30 November, 2001. [20 minutes]

- 1. Use the Right-hand Rule to compute $\int_{0}^{3} (2x^{2}+1) dx.$ [6] [You may need to know that $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}.$]
- 2. Set up and evaluate the Riemann sum for $\int_{0}^{2} (3x+1)dx$ corresponding to the partition $x_0 = 0, x_1 = \frac{2}{3}, x_2 = \frac{4}{3}, x_3 = 2$, with $x_1^* = \frac{1}{3}, x_2^* = 1$, and $x_3^* = \frac{5}{3}$. [4]

Quiz #9. (Late version.) Friday, 30 November, 2001. [20 minutes]

- 1. Use the Right-hand Rule to compute $\int_{1}^{n} (x+1)dx$. [6] [You may need to know that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.]
- 2. Set up and evaluate the Riemann sum for $\int_{0}^{4} x^{2} dx$ corresponding to the partition $x_{0} = 0$, $x_{1} = 1, x_{2} = 2, x_{3} = 3, x_{4} = 4$, with $x_{1}^{*} = 0, x_{2}^{*} = 2, x_{3}^{*} = 2$, and $x_{4}^{*} = 4$. [4]

Quiz #10. Friday, 7 December, 2001. [20 minutes]

Given that $\int_{1}^{4} x \, dx = 7.5$ and $\int_{1}^{4} x^2 \, dx = 21$, use the properties of definite integrals to: Evaluate $\int_{1}^{4} (x+1)^2 \, dx$ [5]

1. Evaluate $\int_{1}^{4} (x+1)^2 dx$. [5]

2. Find upper and lower bounds for $\int_{1}^{4} x^{3/2} dx$. [5]

Quiz #10. (Late version.) Friday, 7 December, 2001. [20 minutes]

1. Without evaluating them, put the following definite integrals in order, from smallest to largest. [5]

$$\int_{0}^{2} \sqrt{x^{2} + 1} \, dx \qquad \int_{0}^{1} x \, dx \qquad \int_{0}^{1} \sqrt{x^{2} + 1} \, dx \qquad \int_{0}^{1} x^{3} \, dx \qquad \int_{0}^{2} (x + 3) \, dx$$

2. Write down (you need not evaluate it) a definite integral(s) representing the area of the region bounded by the curves $y = x - x^3$ and $y = x^3 - x$. [5]

Quiz #11. Friday, 11 January, 2002. [15 minutes]

1. Compute the indefinite integral $\int (x^2 + x + 1)^3 (4x + 2) dx$. [5]

2. Find the area under the graph of $f(x) = \sin(x)\cos(x)$ for $0 \le x \le \frac{\pi}{2}$. [5]

Quiz #12. Friday, 18 January, 2002. [15 minutes]

1. Compute $\int_{1}^{e} \frac{\ln(x^2)}{x} dx.$ [5]

2. Find the area of the region between the curves $y = x^3 - x$ and $y = x - x^3$. [5]

Quiz #12. (Late version.) Friday, 18 January, 2002. [15 minutes]

- 1. Compute $\int_{1}^{\ln(2)} \frac{e^x}{e^{2x}+1} dx.$ [5]
- 2. Find the area of the region bounded below by the curve $y = x^2 1$ and above by the curve $y = \cos\left(\frac{\pi}{2}x\right)$, where $-1 \le x \le 1$. [5]

Quiz #13. Friday, 25 January, 2002. [19 minutes]

1. Find the volume of the solid obtained by revolving the region in the first quadrant bounded by $y = \frac{1}{x}$, y = x, and x = 2 about the x-axis. [10]

Quiz #14. Friday, 1 February, 2002. [17 minutes]

1. Suppose the region bounded above by y = 1 and below by $y = x^2$ is revolved about the line x = 2. Sketch the resulting solid and find its volume. [10]

Quiz #15. Friday, 15 February, 2002. [25 minutes]

Evaluate each of the following integrals.

1.
$$\int_0^{\pi/4} \tan^2(x) \, dx$$
 [4] 2. $\int \sqrt{x^2 + 4x + 5} \, dx$ [6]

Quiz #16. Friday, 1 March, 2002. [25 minutes]

1. Evaluate the following integral:

$$\int \frac{x^2 - 2x - 6}{(x^2 + 2x + 5)(x - 1)} \, dx$$

Quiz #17. Friday, 8 March, 2002. [25 minutes]

1. Evaluate the following integral:

$$\int_{2}^{\infty} \frac{1}{x(x-1)^2} \, dx$$

Quiz #18. Friday, 15 March, 2002. [18 minutes]

Determine whether each of the following series converges or diverges.

1.
$$\sum_{n=0}^{\infty} \left[\frac{1}{n+1} + \frac{3^n}{3^n+1} \right]$$
 [4] 2. $\sum_{n=0}^{\infty} \frac{253}{3^n+1}$ [6]

Bonus Quiz. Monday, 18 March, 2002. [15 minutes]

Compute any two of 1–3.

1.
$$\lim_{t \to \infty} te^{-t}$$
 [5] 2. $\int_0^\infty te^{-t} dt$ [5] 3. $\sum_{n=0}^\infty \frac{1}{n^2 + 3n + 2}$ [5]

Quiz #19. Friday, 22 March, 2002. [20 minutes]

Determine whether each of the following series converges or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
 [5] 2. $\sum_{n=0}^{\infty} \frac{4n+12}{n^2+6n+13}$ [5]

Quiz #19. (Alternate version.) Friday, 22 March, 2002. [20 minutes] Consider the series

$$\sum_{n=0}^{\infty} \frac{\arctan(n+1)}{n^2 + 2n + 2}$$

Determine whether this series converges or diverges using:

- 1. The Comparison Test. [5]
- 2. The Integral Test. [5]

Quiz #20. Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^n + \cos(n\pi)}{n+1}$ converges absolutely, converges conditionally, or diverges. [10]

Quiz #20. (Alternate version.) Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} + \sin\left(n\pi + \frac{\pi}{2}\right)}{n+1}$ converges absolutely, converges conditionally, or diverges. [10]

Quiz #21. Friday, 5 April, 2002. [10 minutes]

1. Find a power series which, when it converges, equals $f(x) = \frac{3x^2}{(1-x^3)^2}$. [10]

Quiz #21. (Alternate version.) Friday, 5 April, 2002. [10 minutes]

1. Find a function which is equal to the power series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n!}$ (when the series converges). [10]