Mathematics 110 - Calculus of one variable

Final Examination
Trent University, 24 April, 2002
Time: 3 hours
Brought to you by Stefan Bilaniuk.
Instructions: Show all your work and justify all your conclusions. If in doubt about something, ask!
Aids: Calculator; $8.5^{\prime \prime} \times 11^{\prime \prime}$ aid sheet or the pamphlet Formula for Success; one brain.
Part I. Do all four of $\mathbf{1 - 4}$.

1. Find $\frac{d y}{d x}$ in any three of $\mathbf{a}-\mathbf{e} . \quad[9=3 \times 3$ ea. $]$
a. $y=x^{2} \ln (x)-1$
b. $y=\frac{\ln (x)}{x^{2}}+x$
c. $\sin ^{2}(y)=e^{-x^{2}}$
d. $y=\int_{x}^{0} \cos \left(t^{2}\right) d t$
e. $y=\sqrt{\sec ^{2}(\arctan (x))-1}$
2. Evaluate any three of the integrals $\mathbf{a}-\mathbf{e} . \quad[12=3 \times 4 e a$.
a. $\int \frac{2 x+3}{\sqrt{1-x^{2}}} d x$
b. $\int_{-\pi / 4}^{\pi / 4} \arctan (x) d x$
c. $\int \cos ^{2}(t) d t$
d. $\int_{1}^{\infty} \frac{1}{x^{3}+x} d x$
e. $\int \frac{1}{x^{2}+2 x+5} d x$
3. Evaluate any three of the limits $\mathbf{a}-\mathbf{e} . \quad[9=3 \times 3$ ea. $]$
a. $\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}$
b. $\lim _{n \rightarrow \infty} \frac{2^{n}}{4^{n}+\pi}$
c. $\lim _{x \rightarrow 0} \frac{\arctan (x)}{x}$
d. $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+2}{2 n+2}$
e. $\lim _{x \rightarrow \pi} \frac{\sin (x)}{x-\pi}$
4. Determine whether the given series converges absolutely, converges conditionally, or diverges in any three of $\mathbf{a}-\mathbf{e} . \quad[12=3 \times 4 \mathrm{ea}$.
a. $\sum_{n=2}^{\infty} \frac{2}{n \ln \left(n^{2}\right)}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)}{n^{2}+3 n+9}$
c. $\sum_{n=1}^{\infty} \frac{(-1)^{4 n}}{2 n+3}$
d. $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}$
e. $\sum_{n=0}^{\infty} \frac{\arctan (-n)}{5^{n}}$

Part II. Do both of 5 and 6.
5. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $f(x)=x \ln (x)$, and sketch its graph. [14]
6. Consider the region in the first quadrant bounded by $y=\sin (x)$ and $y=\frac{2}{\pi} x$.
a. Sketch the region. [2]
b. Sketch the solid obtained by revolving the region about the y-axis. [3]
c. Find the volume of the solid. [7]

Part III. Do one of $\mathbf{7}$ or $\mathbf{8}$.
7. Find the MacLaurin series of $\sin (x)$ and determine its radius of convergence. [12]
8. Find a function which is equal to $2 x+3 x^{2}+8 x^{3}+15 x^{4}+32 x^{5}+63 x^{6}+128 x^{7}+\cdots$, at least when this power series converges. (Note that the coefficient of x^{n} is 2^{n} when n is odd and $2^{n}-1$ when n is even.) [12]

Part IV. Do one of $\mathbf{9}$ or $\mathbf{1 0}$.
9. Use the $\epsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x-3}=0$. [10]
10. A happy face is painted on the surface of a spherical balloon. The face expands as the balloon is inflated at a rate of 10 litres $/ \mathrm{sec}$. If the distance between the eyes is 10 cm at the instant that the diameter of the balloon is 20 cm , how is the distance between the eyes changing at the same instant? [10]

$$
[\text { Total }=90]
$$

Part V. Bonus!
$\mathbf{4 2} \mathbf{2}_{13}=\mathbf{6} \times \mathbf{9}$. Write a little poem about calculus or mathematics in general. [2]

I hope you've had fun in MATH 110! Have a good summer!

