Mathematics 4790H – Analysis II: Topology and Measure

TRENT UNIVERSITY, Winter 2025

Assignment #7 How big is the Borel algebra? Due on Friday, 7 March.*

Recall that the cardinality of a set X, which we'll denote by ||X|| to distinguish it from our notation for outer measure, is essentially the number of elements it has, so ||X|| = ||Y||if and only if all their elements can be paired off. That is, ||X|| = ||Y|| if and only there is a 1–1 onto function $f : X \to Y$. If there is a 1–1 function $g : X \to Y$, then Y has at least as many elements as X does, and we write this as $||X|| \le ||Y||$. Obviously, if $X \subseteq Y$, then $||X|| \le ||Y||$. The Schröder-Bernstein Theorem guarantees that if we have $||X|| \le ||Y||$ and $||Y|| \le ||X||$, then ||X|| = ||Y||. Cantor showed that $||X|| < ||\mathcal{P}(X)||$ for any set X, where $\mathcal{P}(X)$ denotes the power set of X.

Recall also that the Borel algebra \mathcal{B} is the smallest σ -algebra on \mathbb{R} which contains all the intervals of \mathbb{R} .

- 1. Show that $\|\mathbb{R}\| \leq \|\mathcal{B}\|$. [2]
- **2.** Show that $\|\mathcal{B}\| \leq \|\mathcal{P}(\mathbb{R})\|$. [1]
- **3.** $\|\mathcal{B}\|$ is equal to one of $\|\mathbb{R}\|$ or $\|\mathcal{P}(\mathbb{R})\|$. Which is it? Explain why. (You need not give a formal proof.) [7]

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can.