
Mathematics 4790H – Analysis II: Topology and Measure TRENT UNIVERSITY, Winter 2025 Assignment #4 The Cantor Set Due on Friday, 7 February.*

The Cantor set is defined by the following process:

Step 0. Start with the closed unit interval [0, 1].
Step 1. Remove the open middle third of the interval, leaving [0, ¹/₃] and [²/₃, 1].
Step 2. Remove the open middle third of each of the remaining intervals, leaving [0, ¹/₉], [²/₉, ³/₉], [⁶/₉, ⁷/₉] and [⁸/₉, 1].
:
Step n. Remove the open middle third of each of the intervals remaining after step n - 1, leaving [0, ¹/_{3n}], [²/_{3n}, ³/_{3n}], ..., [^{3ⁿ-1}/_{3ⁿ}, 1]

Here is a picture of Steps 0 through 3:

The Cantor set is the limit of the process, *i.e.* what remains after infinitely many steps.

1. Explain why the Cantor set is uncountable. [2]

2. Prove that the Cantor set is compact. [4]

3. Show that the Cantor set has outer measure 0. [4]

Good Advice

Shun advice at any price – that's what I call good advice.

Piet Hein

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can.