Mathematics 4790H – Analysis II: Topology and Measure TRENT UNIVERSITY, Winter 2025

Solutions to Assignment #3Shrink

Recall that a metric space is said to be *complete* if every Cauchy sequence in the metric space has a limit in the space.

Suppose (X, d) is a metric space. A function $f: X \to X$ is said to be a contraction mapping if for some $k \in [0,1)$ and all $x, y \in X$, $d(f(x), f(y)) < k \cdot d(x, y)$. [Note that this forces k to be > 0. If you wish to allow k = 0, change the inequality to $d(f(x), f(y)) \leq d(f(x), f(y)) \leq d(f(x), f(y))$ $k \cdot d(x, y)$.]

1. Suppose (X, d) is a metric space and $f: X \to X$ is a contraction mapping. Show that f is uniformly continuous on X. [5]

SOLUTION. Suppose (X, d) is a metric space and $f: X \to X$ is a contraction mapping with $d(f(x), f(y)) < k \cdot d(x, y)$ for all $x, y \in X$ and some fixed k with 0 < k < 1. Suppose an $\varepsilon > 0$ is given. Let $\delta = \frac{\varepsilon}{k}$. Then, for all $x, y \in X$,

$$d(x,y) < \delta = \frac{\varepsilon}{k} \implies d\left(f(x), f(y)\right) < kd(x,y) < k\delta = k \cdot \frac{\varepsilon}{k} = \varepsilon.$$

Since this works for any $\varepsilon > 0$, $f: X \to X$ is uniformly continuous by definition. \Box

2. Suppose (X, d) is a complete metric space and $f: X \to X$ is a contraction mapping. Show that f has an unique fixed point, i.e. an $x \in X$ such that f(x) = x. [5]

Solution. Suppose that (X, d) is a complete metric space and $f: X \to X$ is a contraction mapping with $d(f(x), f(y)) < k \cdot d(x, y)$ for all $x, y \in X$ and some fixed k with 0 < k < 1.

We first show that $f: X \to X$ has a fixed point. Choose any $x_0 \in X$ and, given that x_n has been defined, let $x_{n+1} = f(x_n) = f^{n+1}(x_0) = f(\cdots f(x_0) \cdots)$. Observe first that for any $n \ge 1$,

$$d(x_{n+1}, x_n) = d(f^{n+1}(x_0), f^n(x_0)) = d(f^n(f(x_0)), f^n(x_0)) = k^n d(x_1, x_0).$$

Now suppose that $m > n \ge 1$. Then

$$d(x_{m}, x_{n}) \leq d(x_{m}, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_{n})$$

$$< k^{m-1}d(x_{1}, x_{0}) + k^{m-2}d(x_{1}, x_{0}) + \dots + k^{n}d(x_{1}, x_{0})$$

$$= (k^{m-1} + k^{m-2} + \dots + k^{n}) d(x_{1}, x_{0})$$

$$< k^{n} (k^{m-n-1} + k^{m-n-2} + \dots + k^{1} + k^{0}) d(x_{1}, x_{0})$$

$$= k^{n} (k^{m-n-1} + k^{m-n-2} + \dots + k + 1) d(x_{1}, x_{0})$$

$$= k^{n} \left(\sum_{i=0}^{m-n-1} k^{i}\right) d(x_{1}, x_{0})$$

$$< k^{n} \left(\sum_{i=0}^{\infty} k^{i}\right) d(x_{1}, x_{0}) = k^{n} \cdot \frac{1}{1-k} \cdot d(x_{1}, x_{0}) = \frac{k^{n}d(x_{1}, x_{0})}{1-k}.$$

It follows that $\{x_n\}$ is a Cauchy sequence. Since 0 < k < 1, $k^n \to 0$ as $n \to \infty$, so if $\varepsilon > 0$, we need only choose an $N \ge 1$ large enough to get $k^N < \frac{1-k}{d(x_1, x_0)}\varepsilon$ to ensure that if $m > n \ge N$, we have

$$d(x_m, x_n) < \frac{k^n d(x_1, x_0)}{1 - k} \le \frac{k^N d(x_1, x_0)}{1 - k} < \frac{1 - k}{d(x_1, x_0)} \varepsilon \cdot \frac{d(x_1, x_0)}{1 - k} = \varepsilon.$$

Since (X, d) is a complete metric space, it follows that the sequence $\{x_n\}$ has a limit, say x^* . We claim that x^* is a fixed point of the contraction mapping $f : X \to X$. By the result in question 1, f must be continuous, so

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f\left(\lim_{n \to \infty} x_{n-1}\right) = f(x^*),$$

i.e. x^* is a fixed point of $f: X \to X$.

It remains to show that x^* is the only fixed point of $f: X \to X$. Suppose, by way of contradiction, x^* and y^* are different fixed points of the contraction mapping f. Then we would have

$$d(x^{*}, y^{*}) = d(f(x^{*}), f(y^{*})) < kd(x^{*}, y^{*}) < d(x^{*}, y^{*})$$

This is a contradiction because no real number can be structly less than itself. Thus x^* must be the unique fixed point of $f: X \to X$.