Mathematics 4790H – Analysis II: Topology and Measure TRENT UNIVERSITY, Winter 2025 Solutions to Assignment #1 2 Cases of Completeness

Recall that a metric space is said to be *complete* if every Cauchy sequence in the metric space has a limit in the space.

 $L^{\infty}([0,1])$ is the metric space whose points are all the continuous functions $f:[0,1] \to \mathbb{R}$, equipped with the metric $d(f,g) = \sup\{|f(x) - g(x)| \ 0 \le x \le 1\}$, sometimes written as $d(f,g) = \max\{|f(x) - g(x)| \ 0 \le x \le 1\}$. On the other hand, $L^1([0,1])$ is the metric space which has the same points, *i.e.* the continuous functions $f:[0,1] \to \mathbb{R}$, but equipped with the metric $d(f,g) = \int_0^1 |f(x) - g(x)| \ dx$

1. Show that $L^{\infty}([0,1])$ is complete. [5]

SOLUTION. Suppose $\{f_n\}$ is a Cauchy sequence in $L^{\infty}([0,1])$.

We claim first that it converges pointwise to some function $f : [0,1] \to \mathbb{R}$. Suppose $t \in [0,1]$ and some $\varepsilon > 0$ is given. Since $\{f_n\}$ is Cauchy, there is an N such that if $m, n \geq N$, then $d(f_n, f_m) < \varepsilon$. But then, for $m, n \geq N$, we have $|f_n(t) - f_m(t)| \leq \sup\{|f_n(x) - f_m(x)| 0 \leq x \leq 1\} = d(f_n, f_m)$. Thus, for any $t \in [0, 1]$, the sequence $\{f_n(t)\}$ is Cauchy in \mathbb{R} (with the usual metric). As \mathbb{R} is a complete metric space, it follows that for each $t \in [0, 1], f_n(t) \to f(t)$ for some $f(t) \in \mathbb{R}$, as required for pointwise convergence.

In fact, $f_n \to f$ uniformly. Suppose $\varepsilon > 0$ is given. Choose an N large enough so that if $m, n \ge N$, then $d(f_n, f_m) < \frac{\varepsilon}{2}$. Then for all $t \in [0, 1]$ at once we have

$$|f_n(t) - f_m(t)| \le \sup\{ |f_n(x) - f_m(x)| \ 0 \le x \le 1 \} = d(f_n, f_m) < \frac{\varepsilon}{2}.$$

In particular, this will be true for any particular $n \ge N$ and all $t \in [0, 1]$ as $m \to \infty$ and $f_m(t) \to f(t)$, so it follows that $|f_n(t) - f(t)| \le \frac{\varepsilon}{2} < \varepsilon$. Since this is true for all $n \ge N$ and all $t \in [0, 1]$, $f_n \to f$ uniformly on [0, 1].

Since the uniform limit of continuous functions is continuous, it follows from the above that $f: [0,1] \to \mathbb{R}$ is continuous [see *e.g.* Theorem 5.6 in the textbook An Introduction to Metric Spaces], i.e. $f \in C([0,1])$ is a point of $L^{\infty}([0,1])$. Thus the Cauchy sequence $\{f_n\}$ has a limit in $L^{\infty}([0,1])$. Since this can be done for any Cauchy sequence in the space, $L^{\infty}([0,1])$ is complete. \Box

2. Show that $L^1([0,1])$ is not complete. [5]

SOLUTION. Consider the sequence of functions $\{f_n\}$, where $f_0 : [0,1] \to \mathbb{R}$ is given by $f_0(x) = 1$ for all $x \in [0,1]$, and $f_n : [0,1] \to \mathbb{R}$ for $n \ge 1$ is given by

$$f_n(x) = \begin{cases} 1 - nx & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \end{cases}.$$

The graphs of the first four functions in the sequence look like this:

Since $1 - n\frac{1}{n} = 1 - 1 = 0$ for all n > 0, $f_n(x)$ is indeed well-defined and continuous at $x = \frac{1}{n}$; since it is otherwise pieced together from two linear functions, it is continuous for all $x \in [0, 1]$.

It is easy to see that $f_n(0) = 1$ for all x and that $f_n(x) = 0$ for $x \ge \frac{1}{n}$. It follows that $\lim_{n \to \infty} f_n(0) = 1$ and that $\lim_{n \to \infty} f_n(x) = 0$ for all x such that $0 < x \le 1$. Thus the pointwise limit of the sequence $\{f_n\}$ is the function $f: [0,1] \to \mathbb{R}$ given by $f(x) = \begin{cases} 1 & x = 0 \\ 0 & 0 < x \le 1 \end{cases}$, which is obviously discontinuous at x = 0 and hence is not a point of $L^1([0,1])$. This means that the sequence $\{f_n\}$ has no limit in $L^1([0,1])$.

On the other hand, $\{f_n\}$ is a Cauchy sequence in $L^1([0,1])$. It is not hard to see – compare the graphs in the diagram above – that if $m > n \ge 1$, then

$$d(f_n, f_m) = \int_0^1 |f_n(x) - f(m(x))| \, dx < \int_0^1 f_n(x) \, dx = \frac{1}{2} \cdot \frac{1}{n} \cdot 1 = \frac{1}{2n}$$

It follows quickly that for any $\varepsilon > 0$ there is an N – any $N > \frac{1}{2\varepsilon}$ will do – such that if $m > n \ge N$, then $d(f_n, f_m) < \frac{1}{2n} \le \frac{1}{2N} < \varepsilon$. Thus $\{f_n\}$ is indeed a Cauchy sequence in $L^1([0, 1])$.

Since not every Cauchy sequence in $L^1([0,1])$ converges, it is not complete.