Mathematics 4790H – Analysis II: Topology and Measure TRENT UNIVERSITY, Winter 2025

Assignment #1 Playing With Sequences Due on Friday, 17 January.*

Suppose $[a_n^k]$ is an infinite matrix of real numbers such that for all $n \ge 0$, $\lim_{k \to \infty} a_n^k = a_n$ for some real number a_n , and for all $k \ge 0$, $\lim_{n \to \infty} a_n^k = a^k$ for some real number a^k .

a_{0}^{0}	a_1^0	a_{2}^{0}	a_{3}^{0}	a_{4}^{0}	•••	\rightarrow	a^0
a_{0}^{1}	a_1^1	a_2^1	a_3^1	a_4^1	•••	\rightarrow	a^1
a_0^2	a_{1}^{2}	a_{2}^{2}	a_{3}^{2}	a_4^2	•••	\rightarrow	a^2
a_0^3	a_{1}^{3}	a_{2}^{3}	a_{3}^{3}	a_{4}^{3}	•••	\rightarrow	a^3
a_0^4	a_1^4	a_{2}^{4}	a_3^4	a_4^4	•••	\rightarrow	a^4
÷	:	:	÷	:	·		:
I	I	I	I	I	•		I
\downarrow	\checkmark	\checkmark	\checkmark	\checkmark			\downarrow
a_0	a_1	a_2	a_3	a_4	•••	\rightarrow	?

- 1. Give an example to show that even if $\lim_{n\to\infty} a_n$ and $\lim_{k\to\infty} a^k$ both exist, they need not be equal. [5]
- 2. Give a condition on the limits involved in this setup that ensures that $\lim_{n \to \infty} a_n = \lim_{k \to \infty} a^k$ if both limits exist, and prove that it does. [5]

$$\int_{-\infty}^{\infty} death^{-x^{2}} dx = \left[\int_{-\infty}^{\infty} comes \ after^{-x^{2}} dx \int_{-\infty}^{\infty} a \ breath^{-y^{2}} dy \right]^{1/2}$$
$$= \left[\int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}} therefore \ \theta \right]^{1/2}$$
$$= \left[\pi \int_{0}^{\infty} breathe \ slowly^{-u} du \right]^{1/2}$$
$$= \sqrt{\pi}$$

Radoslav Rochallyi, "where the parched scythe of fate begs for mercy." # mathaeata, 2021, ISBN: 978-8097373719.

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can.