Mathematics 4790H – Analysis II: Topology and Measure TRENT UNIVERSITY, Winter 2025 Solutions to Assignment #1

Playing With Sequences

Suppose $[a_n^k]$ is an infinite matrix of real numbers such that for all $n \ge 0$, $\lim_{k \to \infty} a_n^k = a_n$ for some real number a_n , and for all $k \ge 0$, $\lim_{n \to \infty} a_n^k = a^k$ for some real number a^k .

a_{0}^{0}	a_1^0	a_{2}^{0}	a_3^0	a_{4}^{0}	•••	\rightarrow	a^0
a_0^1	a_1^1	a_{2}^{1}	a_3^1	a_4^1	•••	\rightarrow	a^1
a_0^2	a_{1}^{2}	a_{2}^{2}	a_{3}^{2}	a_{4}^{2}	•••	\rightarrow	a^2
a_0^3	a_{1}^{3}	a_{2}^{3}	a_{3}^{3}	a_{4}^{3}	•••	\rightarrow	a^3
a_{0}^{4}	a_1^4	a_{2}^{4}	a_3^4	a_4^4	•••	\rightarrow	a^4
:	:	:	:	:	•		:
•	•	•	•	•			•
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	·		\downarrow
a_0	a_1	a_2	a_3	a_4	•••	\rightarrow	?

1. Give an example to show that even if $\lim_{n\to\infty} a_n$ and $\lim_{k\to\infty} a^k$ both exist, they need not be equal. [5]

SOLUTION. Consider the infinite matrix given by $a_n^k = \begin{cases} 1 & n < k \\ 0 & n \ge k \end{cases}$ for $n, k \in \mathbb{N}, i.e.$

0	0	0	0	0	•••	\rightarrow	0
1	0	0	0	0	•••	\rightarrow	0
1	1	0	0	0	•••	\rightarrow	0
1	1	1	0	0	•••	\rightarrow	0
1	1	1	1	0	•••	\rightarrow	0
:	÷	÷	÷	÷	•		÷
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow			\downarrow
1	1	1	1	1	•••	\rightarrow	$1 \neq 0$

It is pretty clear that $a^k = \lim_{n \to \infty} a_n^k = \lim_{n \ge k} 0 = 0$ for all k, and that $a_n = \lim_{k \to \infty} a_n^k = \lim_{k > n} 1 = 1$ for all n. Thus $\lim_{n \to \infty} a_n = 1$ and $\lim_{k \to \infty} a^k = 0$ both exist, but are not equal. \Box

2. Give a condition on the limits involved in this setup that ensures that $\lim_{n \to \infty} a_n = \lim_{k \to \infty} a^k$ if both limits exist, and prove that it does. [5]

SOLUTION. Having

- the sequences $\{a_n^k \mid n \ge 0\}$ converge uniformly to the sequence $\{a_n \mid n \ge 0\}$ as $k \to \infty$, and
- the sequences $\{a_n^k \mid k \ge 0\}$ converge uniformly to the sequence $\{a^k \mid k \ge 0\}$ as $n \to \infty$,

will ensure that $\lim_{n \to \infty} a_n = \lim_{k \to \infty} a^k$ if both of these limits exist.

The sequences $\{a_n^k \mid n \ge 0\}$ converge uniformly to $\{a_n \mid n \ge 0\}$ as $k \to \infty$ means that for all $\varepsilon > 0$, there is a K such that for all $k \ge K$, $|a_n^k - a_n| < \varepsilon$ for all $n \ge 0$ simultaneously. Similarly, the sequences $\{a_n^k \mid k \ge 0\}$ converge uniformly to $\{a^k \mid k \ge 0\}$ as $n \to \infty$ means that for all $\varepsilon > 0$, there is an N such that for all $n \ge N$, $|a_n^k - a_n| < \varepsilon$ for all $k \ge 0$ simultaneously.

We check that this condition does do the job; that is, if the rows and columns of the matrix converge uniformly to the sequences $\{a_n\}$ and $\{a^k\}$, respectively, then $\lim_{n\to\infty} a_n = \lim_{k\to\infty} a^k$ if both of these limits exist. Suppose then that we have the uniform convergence, and that $\lim_{n\to\infty} a_n = b$ and $\lim_{k\to\infty} a^k = c$. We need to show that b = c, which we will do by showing that $|b-c| < \varepsilon$ for any $\varepsilon > 0$. Suppose that an $\varepsilon > 0$ is given.

Since the sequences $\{a_n^k \mid n \ge 0\}$ converge uniformly to $\{a_n \mid n \ge 0\}$ as $k \to \infty$, there is a K such that for all $k \ge K$, $|a_n^k - a_n| < \frac{\varepsilon}{4}$ for all $n \ge 0$ simultaneously.

Since the sequences $\{a_n^k \mid k \ge 0\}$ converge uniformly to $\{a^k \mid k \ge 0\}$ as $n \to \infty$, there is an N such that for all $n \ge N$, $|a_n^k - a_n| < \frac{\varepsilon}{4}$ for all $k \ge 0$ simultaneously

Since $\lim_{n \to \infty} a_n = b$, there is an S such that for all $n \ge S$, $|a_n - b| < \frac{\varepsilon}{4}$. Since $\lim_{k \to \infty} a^k = c$, there is a T such that for all $k \ge T$, $|a^k - c| < \frac{\varepsilon}{4}$.

Let $M = \max\{K, N, S, T\}$. Then if we have $k, n \ge M$, it follows that each of $|a_n^k - a_n|, |a_n^k - a_n|, |a_n - b|, \text{ and } |a^k - c|$ will be less than $\frac{\varepsilon}{4}$. With the help of the triangle inequality, it then follows that:

$$\begin{aligned} |b-c| &< |b-a_n + a_n - a^k + a^k - c| \\ &\leq |b-a_n| + |a_n - a^k| + |a^k - c| \\ &= |a_n - b| + |a_n - a_n^k + a_n^k - a^k| + |a^k - c| \\ &\leq |a_n - b| + |a_n - a_n^k| + |a_n^k - a^k| + |a^k - c| \\ &\leq |a_n - b| + |a_n^k - a_n| + |a_n^k - a^k| + |a^k - c| \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon \end{aligned}$$

Since $|b-c| < \varepsilon$ for any $\varepsilon > 0$, we must have $0 \le |b-c| \le 0$, which is only possible if b = c. Hence $\lim_{n \to \infty} a_n = b = c = \lim_{k \to \infty} a^k$, as required.