
Mathematics-Computer Science 4215H – Mathematical Logic
Trent University, Winter 2021

Assignment #5
Due on Friday, 26 February.

Do all of the following problems, two of which are straight out of the textbook0 (which
explains the numbering), reproduced here for your convenience.

4.12. [Theorem 4.12 – Completeness Theorem] If ∆ is a set of formulas and α is a formula
such that ∆ � α, then ∆ ` α. [5]

Solution. It suffices to prove the contrapositive, i.e. that if ∆ 0 α, then ∆ 2 α.
Suppose that ∆ 0 α. We claim that ∆ ∪ {¬α} must be consistent. Assume, by way

of contradiction, that ∆ ∪ {¬α} is inconsistent, i.e. ∆ ∪ {¬α} ` ¬(ϕ → ϕ) for some
formula ϕ. It follows by the Deduction Theorem that ∆ ` ¬α → ¬(ϕ → ϕ), say via the
deduction η1η2 . . . ηn. By Problem 3.9(3), ` (¬α→ ¬(ϕ→ ϕ))→ ((ϕ→ ϕ)→ α), say via
the deduction ξ1ξ2 . . . ξk. By Example 3.1, ` ϕ → ϕ, via a deduction of length 5 given in
the example which we shall abbreviate as τ1 . . . τ5 here. Then

η1η2 . . . ηnξ1ξ2 . . . ξk ((ϕ→ ϕ)→ α) τ1 . . . τ5α

is a deduction of α from ∆. Note that ((ϕ→ ϕ)→ α) follows from ηn and ξk by Modus
Ponens, and α follows from ((ϕ→ ϕ)→ α) and τ5 by Modus Ponens. Thus if ∆∪{¬α} is
inconsistent, ∆ ` α is true, but this contradicts ∆ 0 α.

Hence if ∆ 0 α, then ∆ ∪ {¬α} must be consistent. By Theorem 4.11, it follows that
∆ ∪ {¬α} is satisfiable, but any truth assignment satisfying this set makes every formula
in ∆ true and makes α false, so ∆ 2 α, as desired. �

4.13. [Theorem 4.13 – Compactness Theorem] A set of formulas Γ is satisfiable if and only
if every finite subset of Γ is satisfiable. [4]

Solution. Suppose Γ is a set of formulas of LP . Then

Γ is satisfiable ⇐⇒ Γ is consistent [Theorem 4.11]

⇐⇒ Every finite subset ∆ of Γ is consistent [Corollary 4.5]

⇐⇒ Every finite subset ∆ of Γ is satisfiable [Theorem 4.11] �

In proving the above results, you may appeal to any preceding results and problems
in the textbook that you like. Given that, both should be fairly easy to put away. The
following application of the Compactness Theorem (Hint!), will require probably greater
effort.

0 A Problem Course in Mathematical Logic, Version 1.6.
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RT. [Ramsey’s Theorem] For every integer n > 0 there is an integer Rn > 0 such that if
G = (V,E) is a graph with at least Rn vertices, then G has a clique of size n or an
independent set of size n. [6]

This problem requires some background, some of which you have probably seen else-
where:

• A graph G is a pair (V,E) consisting of a set V of vertices and set E ⊂ V ×V of edges
such that (u, v) ∈ E ⇐⇒ (v, u) ∈ E.
• A clique of a graph G = (V,E) is a subset C ⊆ V of the vertices such that for all
u, v ∈ C, (u, v) ∈ E.
• An independent set of a G = (V,E) is a subset I ⊆ V of the vertices such that for all
u, v ∈ I, (u, v) /∈ E.
• [Infinite Ramsey’s Theorem] A graph G = (V,E) with infinitely many vertices must

have an infinite clique or an infinite independent set. [You may, and will probably
need to, assume this theorem.]

Your task over Reading Week is to try to figure out how the Compactness Theorem
could be useful in proving Ramsey’s Theorem. I will be forthcoming with hints after
Reading Week . . .

Solution. Our strategy will be show that the failure of Ramsey’s Theorem for some
n leads to a contradiction. The Compactness Theorem will allow us to proceed from a
failure of Ramsey’s Theorem for finite graphs to an infinite graph contradicting the Infinite
Ramsey’s Theorem. What we need to make this happen is a way of representing graphs
using propositional logic.

To deal with arbitrarily large finite – and possibly (countably) infinite – graphs we
need a set of countably infinitely many vertices, say V = { v0, v1, v2, . . . } = { vi | i ∈ N }.
A set E ⊆ V × V of edges for a graph using some or all of these vertices can then be
represented by atomic formulas as follows.

Let σ : N× N→ N be a 1–1 onto function.1 We will use Aσ(i,j) to represent an edge
between the vertices vi and vj : if Aσ(i,j) is true, then (vi, vj) ∈ E, and if Aσ(i,j) is false,
then (vi, vj) /∈ E. Thus each possible graph G(V,E) on our set of vertices corresponds to
a truth assignment in our propositional logic.

Suppose now that Ramsey’s Theorem fails for some n > 0. That is, suppose that there
are arbitrarily large finite graphs which have neither a clique of size n nor an independent
set of size n. Let Σ0, Σ1, and Σ2 be the following sets of formulas of LP :

Σ0 =
{
Aσ(i,j) ↔ Aσ(j,i) | i, j ∈ N

}
Σ1 =

{
¬
(
Aσ(i1,i2) ∧Aσ(i1,i3) ∧ · · · ∧Aσ(in−1,in)

)
| i1, i2, . . . , in ∈ N & are distinct

}
Σ2 =

{
Aσ(i1,i2) ∨Aσ(i1,i3) ∨ · · · ∨Aσ(in−1,in) | i1, i2, . . . , in ∈ N & are distinct

}
The formulas in Σ0 assure us that we are dealing with a graph by ensuring that we satisfy
the condition that edges be bi-directional, i.e. (u, v) ∈ E ⇐⇒ (v, u) ∈ E. Σ1 consists
of formulas that between them assert that every collection of n vertices vi1 , vi2 , . . . , vin ,

1 If you need to be totally explicit for some reason, σ(i, j) = (i+ j)(i+ j + 1)/2 + j will do.
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has at least one missing edge, so it is not a clique. Similarly, Σ2 consists of formulas that
between them assert that every collection of n vertices vi1 , vi2 , . . . , vin , has at least one
edge, so it is not an independent set.

Let Σ = Σ0 ∪ Σ1 ∪ Σ2. We claim that if Ramsey’s Theorem fails for n, then Σ is
satisfiable. Suppose ∆ is a finite subset of Σ. Since ∆ is finite, there is a largest integer
m ≥ 0 such that vm occurs in one of the finitely many possible edges corresponding to one
of the atomic formulas occurring in ∆. Since Ramsey’s Theorem supposedly fails for n,
there is a graph G′ = (V ′, E′) with m + 1 (or more vertices) that has no clique of size n
and no independent set of size n. Identify m + 1 vertices of G′ with v1, v2, . . . , and vm,
respectively, and define a truth assignment u by u (Aσ(i, j)) = T , for i, j ≤ m, if and only
if there is an edge between the vertices of G′ corresponding to vi and vj . Define u in any
way you like for all other atomic formulas. It is not hard to see that u must satisfy ∆:
Every formula in ∆ of the form . . .

• Aσ(i,j) ↔ Aσ(j,i) is satisfied because G′ is a graph, so (u,w) ∈ E′ ⇐⇒ (w, u) ∈ E′;

• ¬
(
Aσ(i1,i2) ∧Aσ(i1,i3) ∧ · · · ∧Aσ(in−1,in)

)
is satisfied because G′ has no cliques of size

n, so every collection of n of it’s vertices is missing at least one edge; and
• Aσ(i1,i2) ∨ Aσ(i1,i3) ∨ · · · ∨ Aσ(in−1,in) is satisfied because G′ has no independent sets

of size n, so every collection of n of it’s vertices has at least one edge.

Since every finite subset of Σ is satisfiable, it follows by the Compactness Theorem that Σ
is satisfiable.

However, if Σ is satisfied by some truth assignment, this corresponds to an infinite
graph G = (V,E) that has no cliques of size n and no independent sets of size n. This
contradicts the Infinite Ramsey’s Theorem, since an infinite graph must have an infinite
clique or an infinite independent set: the former would give you cliques of every finite size,
including n, and the latter would give you independent sets of every finite size, including
n.

Since having Σ be satisfiable leads to a contradiction and having Ramsey’s Theorem
fail for n leads to having Σ be satisfiable, Ramsey’s Theorem must be true for n. This
reasoning for every n > 0, so Ramsey’s Theorem must be true. �

[Total = 15]
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