Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Solutions to Assignment #4

Due on Friday, 12 February.

Do all of the following problems, which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

3.9. [Problem 3.9] Appealing to previous deductions and the Deduction Theorem if you wish, show that:

 $\begin{array}{ll} (1) & \{\delta, \neg \delta\} \vdash \gamma & [1] \\ (2) & \vdash \varphi \rightarrow \neg \neg \varphi & [4] \end{array}$

NOTE. You may assume any and all of the examples, problems, and results of Chapter 3, up to 3.8 inclusive, when doing 3.9 (1) & (2).

Solutions. 3.9(1): We will show that $\{\delta, \neg \delta\} \vdash \gamma$ via the following deduction:

1. $(\neg \gamma \rightarrow \neg \delta) \rightarrow ((\neg \gamma \rightarrow \delta) \rightarrow \gamma)$	(A3)
2. $\neg \delta \rightarrow (\neg \gamma \rightarrow \neg \delta)$	(A1)
3. $\neg \delta$	Premiss
4. $\neg \gamma \rightarrow \neg \delta$	$2, 3 \mathrm{MP}$
5. $(\neg \gamma \rightarrow \delta) \rightarrow \gamma$	$1, 4 \mathrm{MP}$
6. $\delta \to (\neg \gamma \to \delta)$	(A1)
7. δ	Premiss
8. $\neg \gamma \rightarrow \delta$	$6, 7 \mathrm{MP}$
9. γ	$5, 8 \mathrm{MP}$

One down! \Box

3.9(2): By the Deduction Theorem, to show $\vdash \varphi \rightarrow \neg \neg \varphi$ it is sufficient to show that $\{\varphi\} \vdash \neg \neg \varphi$. We show the latter via the following deduction:

1. $(\neg\neg\neg\varphi \rightarrow \neg\varphi) \rightarrow ((\neg\neg\neg\varphi \rightarrow \varphi) \rightarrow \neg\neg\varphi)$	(A3)
2. $\neg \neg \neg \varphi \rightarrow \neg \varphi$	Example 3.4
3. $(\neg \neg \neg \varphi \rightarrow \varphi) \rightarrow \neg \neg \varphi$	$1, 2 \mathrm{MP}$
4. $\varphi \to (\neg \neg \neg \varphi \to \varphi)$	(A1)
5. φ	Premiss
6. $\neg \neg \neg \varphi \rightarrow \varphi$	$4,5~\mathrm{MP}$
7. $\neg \varphi$	$3, 6 \mathrm{MP}$
Two down!	

4.3. [Proposition 4.3] Suppose Δ is an inconsistent set of formulas. Then $\Delta \vdash \psi$ for any formula ψ . [2]

SOLUTION. Suppose Δ is an inconsistent set of formulas and ψ is any formula. By the definition of "inconsistent", $\Delta \vdash \neg(\alpha \rightarrow \alpha)$ for some formula α , say via the deduction $\eta_1 \eta_2 \dots \eta_n$. Then

⁰ A Problem Course in Mathematical Logic, Version 1.6.

1.
$$\eta_1$$

2. \vdots
2. n, η_n [*i.e.* $\neg(\alpha \to \alpha)$]
 $n+1. (\neg \psi \to \neg(\alpha \to \alpha)) \to ((\neg \psi \to (\alpha \to \alpha)) \to \psi)$ (A3)
 $n+2. \neg(\alpha \to \alpha) \to (\neg \psi \to \neg(\alpha \to \alpha))$ (A1)
 $n+3. \neg \psi \to \neg(\alpha \to \alpha)$ (A1)
 $n+4. (\neg \psi \to (\alpha \to \alpha)) \to \psi$ $n+1, n+3$ MP
 $n+5. (\alpha \to \alpha) \to (\neg \psi \to (\alpha \to \alpha))$ (A1)
 $n+6. \alpha \to \alpha$ Example 3.1
 $n+7. \neg \psi \to (\alpha \to \alpha)$ $n+5, n+6$ MP
 $n+8. \psi$ $n+4, n+7$ MP

is a deduction of ψ from Δ , as required.

4.4. [Proposition 4.4] Suppose Σ is an inconsistent set of formulas. Then there is a finite subset Δ of Σ such that Δ is inconsistent. [2]

SOLUTION. Suppose Σ is an inconsistent set of formulas. By definition, this means that $\Sigma \vdash \neg(\alpha \to \alpha)$ for some formula α , say via the deduction $\eta_1 \eta_2 \dots \eta_n$. Let $\Delta = \{\eta_i \mid \eta_i \in \Sigma\}$. $\Delta \subseteq \Sigma$ by its definition and Δ is finite because it is also a subset of the finite set $\{\eta_1, \eta_2, \dots, \eta_n\}$. Finally, $\Delta \vdash \neg(\alpha \to \alpha)$ because the deduction $\eta_1 \eta_2 \dots \eta_n$ is a deduction of $\neg(\alpha \to \alpha)$ as well: every time some η_i is justified as being a premiss from Σ , it is also present in Δ . Thus Δ is a finite inconsistent subset of Σ .

4.5. [Corollary 4.5] A set of formulas Γ is consistent if and only if every finite subset of Γ is consistent. [2]

SOLUTION. (\Leftarrow) Suppose every finite subset of Γ is consistent. Then Γ must be consistent because if it was inconsistent, some finite subset of it would also be inconsistent by Proposition 4.4.

 (\Longrightarrow) Suppose Γ is consistent. If some finite subset $\Delta \subseteq \Gamma$ were inconsistent, then, be definition, $\Delta \vdash \neg(\alpha \rightarrow \alpha)$ for some formula α . By Proposition 3.6, it would follow that $\Gamma \vdash \neg(\alpha \rightarrow \alpha)$ because $\Delta \subseteq \Gamma$, contradicting the fact that Γ is consistent. Thus every finite subset of Γ must also be consistent.

4.8. [Proposition 4.8] Suppose Σ is a maximally consistent set of formulas and φ is a formula. Then $\neg \varphi \in \Sigma$ if and only if $\varphi \notin \Sigma$. [2]

SOLUTION. (\Longrightarrow) Suppose Σ is a maximally consistent set of formulas and $\neg \varphi \in \Sigma$. By Problem 3.9(1), $\{\varphi, \neg\varphi\} \vdash \neg(\alpha \rightarrow \alpha)$ for any formula α , so $\{\varphi, \neg\varphi\}$ is inconsistent. If we had $\varphi \in \Sigma$, then would be an inconsistent finite subset of Σ , which would make Σ inconsistent by Corollary 4.5. However, this would contradict the maximal consistency of Σ , so we must have $\varphi \notin \Sigma$.

(\Leftarrow) Suppose Σ is a maximally consistent set of formulas and $\varphi \notin \Sigma$. By the definition of maximal consistency, it follows that $\Sigma \cup \{\varphi\}$ is inconsistent, and so, by Proposition 4.3,

 $\Sigma \cup \{\varphi\} \vdash \neg(\alpha \to \alpha)$ for some (indeed, any) formula α . Applying the Deduction Theorem, it now follows that $\Sigma \vdash \varphi \to \neg(\alpha \to \alpha)$, say via the deduction $\mu_1 \mu_2 \dots \mu_n$. Then

1.
$$\mu_1$$

2. \vdots
 $n. \mu_n \quad [i.e. \ \varphi \to \neg(\alpha \to \alpha)]$
 $n+1. \ (\varphi \to \neg(\alpha \to \alpha)) \to ((\alpha \to \alpha) \to \neg\varphi)$
 $n+2. \ (\alpha \to \alpha) \to \neg\varphi$
 $n+3. \ \alpha \to \alpha$
 $n+4. \ \neg\varphi$
Problem 3.9(6)
 $n, n+1 \text{ MP}$
Example 3.1
 $n+2, n+3 \text{ MP}$

is a deduction of $\neg \varphi$ from Σ , so $\Sigma \vdash \neg \varphi$. Since Σ is maximally consistent it follows by Proposition 4.7 that $\neg \varphi \in \Sigma$.

4.9. [Proposition 4.9] Suppose Σ is a maximally consistent set of formulas and φ and ψ are formulas. Then $\varphi \to \psi \in \Sigma$ if and only if $\varphi \notin \Sigma$ or $\psi \in \Sigma$. [2]

SOLUTION. (\Longrightarrow) Suppose Σ is a maximally consistent set of formulas and $\varphi \to \psi \in \Sigma$. We need to show that $\varphi \notin \Sigma$ or $\psi \in \Sigma$; it suffices to show that if $\varphi \notin \Sigma$ fails, *i.e.* $\varphi \in \Sigma$, then $\psi \in \Sigma$. Assuming $\varphi \in \Sigma$,

1. $\varphi \rightarrow \psi$	Premiss
2. φ	Premiss
3. ψ	$1, 2 \mathrm{MP}$

is a deduction of ψ from Σ , so $\Sigma \vdash \psi$. Since Σ is maximally consistent it follows by Proposition 4.7 that $\psi \in \Sigma$.

(\Leftarrow) Suppose Σ is a maximally consistent set of formulas, with $\varphi \notin \Sigma$ or $\psi \in \Sigma$. First, if $\psi \in \Sigma$, then

1. $\psi \to (\varphi \to \psi)$	(A1)
2. ψ	Premiss
3. $\varphi \rightarrow \psi$	$1, 2 \mathrm{MP}$

is a deduction of $\varphi \to \psi$ from Σ . Since Σ is maximally consistent it follows by Proposition 4.7 that $\varphi \to \psi \in \Sigma$.

Second, if $\varphi \notin \Sigma$, then $\neg \varphi \in \Sigma$ by Proposition 4.8. Then

1. $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$	(A1)
2. $\neg \varphi$	Premiss
3. $\neg \psi \rightarrow \neg \varphi$	$1, 2 \mathrm{MP}$
4. $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$	Problem $3.9(3)$
5. $\varphi \to \psi$	$3, 4 \mathrm{MP}$

is a deduction of $\varphi \to \psi$ from Σ . Since Σ is maximally consistent it follows by Proposition 4.7 that $\varphi \to \psi \in \Sigma$.

Either way, if $\varphi \notin \Sigma$ or $\psi \in \Sigma$, then $\varphi \to \psi \in \Sigma$, as required.

|Total = 15|