Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #3

Due on Friday, 5 February.

Do all of the following problems, which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

3.1. [Proposition 3.1] Every axiom of \mathcal{L}_P is a tautology. [3]

SOLUTION. We will use truth tables to check:

Since no matter what truth values a truth assignment may give the subformulas in each of the axiom schema, it makes that axiom true, every axiom of \mathcal{L}_P is a tautology.

3.2. [Proposition 3.2] Suppose φ and ψ are formulas. Then $\{\varphi, (\varphi \to \psi)\} \vdash \psi$. [1]

SOLUTION. There was a typo in the version of the proposition given on the assignment. Proposition 3.2, as correctly given in the textbook, has $\{\varphi, (\varphi \to \psi)\} \vDash \psi$ as the conclusion instead of $\{\varphi, (\varphi \to \psi)\} \vdash \psi$. Given that, I accepted solutions to both versions. Solutions to both versions are given below.

⁰ A Problem Course in Mathematical Logic, Version 1.6.

 $(\vdash) \{\varphi, (\varphi \to \psi)\} \vdash \psi$ via the following deduction:

1. φ	Premiss
2. $\varphi \to \psi$	Premiss
3. ψ	1,2 MP

That's that! \Box

 (\vDash) We check that $\{\varphi, (\varphi \to \psi)\} \vDash \psi$ using a truth table:

$$\begin{array}{ccccc} \varphi & \psi & \varphi \rightarrow \psi \\ T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

In every row (that is, in the first row) of the truth table that both φ and $\varphi \to \psi$ are true, we also have ψ true, every truth assignment satisfying { φ , ($\varphi \to \psi$)} also satisfies ψ , as required.

3.4. [Proposition 3.4] If $\varphi_1 \varphi_2 \dots \varphi_n$ is a deduction of \mathcal{L}_P , then $\varphi_1 \dots \varphi_\ell$ is also a deduction of \mathcal{L}_P for any ℓ such that $1 \leq \ell \leq n$. [1]

SOLUTION. If $\varphi_1 \varphi_2 \dots \varphi_n$ is a deduction from set of formulas Σ , then, by definition, for each $k \leq n$, φ_k is a premise (*i.e.* in Σ), an axiom, or there are i, j < k such that φ_k follows from φ_i and φ_j by MP. Since $\ell \leq n$, it follows that for each $k \leq \ell$, φ_k is a premise from Σ , an axiom, or there are i, j < k such that φ_k follows from φ_i and φ_j by MP. This means that $\varphi_1 \dots \varphi_\ell$ also satisfies the definition of a deduction from Σ .

3.7. [Proposition 3.7] If $\Gamma \vdash \Delta$ and $\Delta \vdash \sigma$, then $\Gamma \vdash \sigma$. [3]

SOLUTION. This is as much an exercise in trying to find suitable notation as anything else. The basic idea is to take a deduction of σ from Δ and insert the deduction from Γ of each premiss in Δ in place of that premiss in the deduction of σ .

- Let $\eta_1 \eta_2 \dots \eta_n$ be a deduction of σ from Δ . For each $k \leq n$, let $\eta_1^k \eta_2^k \dots \eta_{m_k}^k$ be
- just η_k if η_k is an axiom or follows from preceding η_i and η_j by Modus Ponens (so $n_k = 1$ and η_{m_k} is η_k in either case), and
- a deduction of η_k from Γ (so η_{m_k} is η_k) if $\eta_k \in \Delta$.

Each formula in the sequence $\eta_1^1 \eta_2^1 \dots \eta_{m_1}^1 \eta_1^2 \eta_2^2 \dots \eta_{m_2}^2 \dots \eta_1^n \eta_2^n \dots \eta_{m_n}^n$ is then either an axiom, follows from preceding formulas in the sequence by Modus Ponens, or is a premiss from Γ . Since the last formula in the sequence is $\eta_{m_n}^n$, *a.k.a.* η_n , *a.k.a.* σ , it is a deduction of σ from Γ , so $\Gamma \vdash \sigma$, as desired.

3.8. [Theorem 3.8 – Deduction Theorem] If Σ is any set of formulas and α and β are any formulas, then $\Sigma \vdash \alpha \rightarrow \beta$ if and only if $\Sigma \cup \{\alpha\} \vdash \beta$. [5]

SOLUTION. (\Longrightarrow) Suppose $\Sigma \vdash \alpha \to \beta$, say via a deduction $\varphi_1 \varphi_2 \dots \varphi_n$ (so φ_n is $\alpha \to \beta$). Then $\varphi_1 \varphi_2 \dots \varphi_n \alpha \beta$ is a deduction of β from $\Sigma \cup \{\alpha\}$ because each formula in the sequence is either a premiss in $\Sigma \cup \{\alpha\}$, an axiom, or follows from preceding formulas in the sequence by Modus Ponens. Note that β , in particular, follows from φ_n , *i.e.* $\alpha \to \beta$, and α (which is in $\Sigma \cup \{\alpha\}$) by Modus Ponens.

(\Leftarrow) Suppose $\Sigma \cup \{\alpha\} \vdash \beta$ for some formula β , say via a shortest deduction $\varphi_1 \varphi_2 \dots \varphi_n$ (so φ_n is β). We will use induction on $n \ge 1$ to show that $\Sigma \vdash \alpha \to \beta$.

Base Step. (n = 1) In this case β is either an axiom or a premise $(i.e. \ \beta \in \Sigma \cup \{\alpha\})$. If β is an axiom or $\beta \in \Sigma$, then

1.
$$\beta \rightarrow (\alpha \rightarrow \beta)$$
 (A1)
2. β Axiom or $\beta \in \Sigma$
3. $\alpha \rightarrow \beta$ 1.2 MP

is a deduction of $\alpha \to \beta$ from Σ . If β is α , the other way β could be a premiss from $\Sigma \cup \{\alpha\}$, then $\vdash \alpha \to \alpha$ by Example 3.1 in the textbook, so $\Sigma \vdash \alpha \to \beta$ because $\emptyset \subseteq \Sigma$ and the fact that β is α .

In each case, we can conclude that $\Sigma \vdash \alpha \rightarrow \beta$ in the Base Step.

Induction Hypothesis. $(n \leq k)$ Assume that for all formulas β with $\Sigma \cup \{\alpha\} \vdash \beta$ via a shortest possible deduction $\varphi_1 \varphi_2 \dots \varphi_n$ for some n with $1 \leq n \leq k$, we have $\Sigma \vdash \alpha \to \beta$. Induction Step. (n = k + 1) Suppose that $\Sigma \cup \{\alpha\} \vdash \beta$ for some formula β , via a shortest deduction $\varphi_1 \varphi_2 \dots \varphi_k \varphi_{k+1}$ (so φ_{k+1} is β). Since this is the shortest possible deduction and $k \geq 1$, φ_{k+1} , otherwise known as β , must have been obtained from some φ_i and φ_j with $i, j \leq k$ by Modus Ponens. Without loss of generality, we may suppose that φ_i is $\varphi_j \to \beta$. By Proposition 3.4, $\varphi_1 \varphi_2 \dots \varphi_i$ and $\varphi_1 \varphi_2 \dots \varphi_j$ are also deductions from $\Sigma \cup \{\alpha\}$, so $\Sigma \vdash \alpha \to \varphi_i$, *i.e.* $\Sigma \vdash \alpha \to (\varphi_j \to \beta)$, and $\Sigma \vdash \alpha \to \varphi_j$ by the Induction Hypothesis. Suppose $\eta_1 \eta_2 \dots \eta_\ell$ and $\zeta_1 \zeta_2 \dots \zeta_m$ are deductions of $\alpha \to (\varphi_j \to \beta)$ and $\alpha \to \varphi_j$, respectively, from Σ . Then

1.
$$\eta_1$$

::
 ℓ . η_ℓ i.e. $\alpha \to (\varphi_j \to \beta)$
 $\ell + 1. \zeta_1$
::
 $\ell + m. \zeta_m$ i.e. $\alpha \to \varphi_j$
 $\ell + m + 1. \ (\alpha \to (\varphi_j \to \beta)) \to ((\alpha \to \varphi_j) \to (\alpha \to \beta))$ (A2)
 $\ell + m + 2. \ (\alpha \to \varphi_j) \to (\alpha \to \beta)$ $\ell, \ell + m + 1$ MP
 $\ell + m + 3. \ \alpha \to \beta$ $\ell + m, \ell + m + 2$ MP

is a deduction of $\alpha \to \beta$ from Σ , so $\Sigma \vdash \alpha \to \beta$, as desired.

Thus, by induction, if $\Sigma \cup \{\alpha\} \vdash \beta$, then $\Sigma \vdash \alpha \rightarrow \beta$.

- **3.9**(3). [Proposition 3.9(3)] Appealing to previous deductions and the Deduction Theorem if you wish, show that $\vdash (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$. [2]
- NOTE. You may assume any and all the examples, problems, and results of Chapter 3, up to 3.9(2) inclusive, when doing 3.9(3).

SOLUTION. By the Deduction Theorem, applied twice:

$$\vdash (\neg \beta \to \neg \alpha) \to (\alpha \to \beta)$$
$$\iff \{\neg \beta \to \neg \alpha\} \vdash \alpha \to \beta$$
$$\iff \{\neg \beta \to \neg \alpha, \alpha\} \vdash \beta$$

It therefore suffices to show that $\{\neg \beta \rightarrow \neg \alpha, \alpha\} \vdash \beta$, which do via the following deduction:

1. $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$	(A3)
2. $\neg \beta \rightarrow \neg \alpha$	Premiss
3. $(\neg \beta \rightarrow \alpha) \rightarrow \beta$	$1, 2 \mathrm{MP}$
4. $\alpha \to (\neg \beta \to \alpha)$	(A1)
5. α	Premiss
6. $\neg \beta \rightarrow \alpha$	$4, 5 \mathrm{MP}$
7. β	$3, 6 \mathrm{MP}$

That's all folks!. \blacksquare

[Total = 15]