Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Solutions to Assignment #1

Due on Friday, 22 January.

Do all of the following problems, which are straight out of Chapter 1 of the textbook⁰ (which explains the numbering), reproduced here for your convenience with a few explanations in the added footnotes.

- **1.1.** [Problem 1.1] Why are the following not formulas of \mathcal{L}_P ? There might be more than one reason ... $[1.5 = 3 \times 1.5 \text{ each}]$
 - (1) A_{-56}
 - (3) $A_7 \leftarrow A_4$
 - (5) $(A_8A_9 \to A_{1043998})$

SOLUTIONS. (1) Atomic formulas of \mathcal{L}_P only have indices in \mathbb{N} and $-56 \notin \mathbb{N}$.

(2) \leftarrow is not a symbol of \mathcal{L}_P . Also, every non-atomic official formula of \mathcal{L}_P is enclosed by parentheses, which the given string of symbols lacks.

(3) Two atomic formulas cannot occur next to each other in a formula; there must always be at least one connective symbol between them. Also, there is no right outside parenthesis to ballance the left outside parenthesis. \Box

1.5. [Problem 1.5] What are the possible lengths¹ of formulas of \mathcal{L}_P ? Prove it. [5]

SOLUTION. Every formula must have at least one symbol, so there are no formulas of length 0.

There exist formulas of length 1: every atomic formula is a formula of length 1.

The only ways to get longer formulas from shorter formulas are to negate a formula – note that $(\neg \alpha)$ adds three symbols to the symbols present in α – or to make an implication between two formulas – note that $(\alpha \rightarrow \beta)$ adds three symbols to the symbols present in α and β . It follows that there are no formulas of length 2 or 3, since adding three symbols to a formula or formulas with 1 or more symbols results in a formula with at least 4 symbols.

There exist formulas of lengths 4 and 5, since $(\neg A_0)$ and $(A_1 \rightarrow A_2)$, respectively, are examples of such.

There are no formulas of length 6. Suppose, by way of contradiction, that γ is a formula of length 6. Since γ is not atomic, being of length greater than 1, it must either be $(\neg \alpha)$ for some shorter formula α or $(\beta \rightarrow \delta)$ for some shorter formulas β and δ . In the former case, α would have to have length 3, which we have already shown to be impossible; in the latter case, one β and δ would have to have a combined length of 3, so one would have to have length 1 and the other would have to have length 2, which last we have also shown to be impossible. Either way, there can be no formula of length 6.

⁰ A Problem Course in Mathematical Logic, Version 1.6.

¹ As sequences of symbols.

There are formula of lengths 7, 8, and 9, since the formulas $(\neg (\neg A_0)), (\neg (A_1 \rightarrow A_2)),$ and $(A_0 \rightarrow (A_1 \rightarrow A_2))$, respectively, are examples of such.

There exist formulas of every length greater than or equal to 10. Suppose $n \ge 10$. Then n = 3k for some $k \ge 4$, n = 3k + 1 for some $k \ge 3$, or n = 3k + 2 for some $k \ge 3$.

If n = 3k with $k \ge 4$, we can make a formula of length n by negating or formula of length 9 above k-3 times, which would result in a formula with 9+3(k-3) = 9+3k-9 = 3k = n symbols.

If n = 3k + 1 with $k \ge 3$, we can make a formula of length n by negating our formula of length 7 above k - 2 times, which would result in a formula with a total of 7 + 3(k - 2) = 7 + 3k - 6 = 3k + 1 = n symbols.

If n = 3k + 2 with $k \ge 3$, we can make a formula of length n by negating our formula of length 8 above k - 2 times, which would result in a formula with a total of 8 + 3(k - 2) = 8 + 3k - 6 = 3k + 2 = n symbols.

Combining all of the above, there are formulas of \mathcal{L}_P of length n for all natural numbers n except for 0, 2, 3, and 6. \Box

1.7. [Proposition 1.7] Show that the set of formulas of \mathcal{L}_P is countable². [5]

SOLUTION. We will use parts (1) and (4) of Proposition A.1 of Appendix A. Note first that the set of symbols of \mathcal{L}_P can be put into a 1–1 correspondence with the natural numbers,

0	1	2	3	4	6	7	 k+4	
\updownarrow	\updownarrow	\uparrow	\updownarrow	\uparrow	\uparrow	\uparrow	 \uparrow	
()		\rightarrow	A_0	A_1	A_2	 A_k	··· ,

so it is countable (see Definition A.4). By Proposition A.1(4), it follows that the set of all finite sequences of symbols of \mathcal{L}_P is countable. Since the set of formulas of \mathcal{L}_P is a subset of this set of finite sequences, and since the set of formulas of \mathcal{L}_P is an infinite set since every one of the infinitely many atomic formulas is a formula, it follows by Proposition A.1(1) that the set of formulas of \mathcal{L}_P is countable. \Box

1.9. [Problem 1.9] Write out $((\alpha \lor \beta) \land (\beta \to \alpha))$ using only \neg and \rightarrow . [1.5]

SOLUTION. Starting with the given unofficial (but fully parenthesized) formula,

$$((\alpha \lor \beta) \land (\beta \to \alpha))$$
,

we first replace $(\alpha \lor \beta)$ by its official form $((\neg \alpha) \to \beta)$,

$$(((\neg \alpha) \rightarrow \beta) \land (\beta \rightarrow \alpha))$$
,

and then replace the construction $(\gamma \wedge \delta)$ by its official form of $(\neg (\gamma \to (\neg \delta)))$, where γ is $((\neg \alpha) \to \beta)$ and δ is $(\beta \to \alpha)$:

$$(\neg (((\neg \alpha) \to \beta) \to (\neg (\beta \to \alpha)))) \qquad \Box$$

 $^{^{2}}$ That is, all the elements of the set can be put into a list indexed by the natural numbers.

1.11. [Problem 1.11] Find all the subformulas of each of the following formulas³. $[2 = 2 \times 1 \text{ each}]$

- (1) $(\neg ((\neg A_{56}) \rightarrow A_{56}))$
- (2) $A_9 \to A_8 \to \neg (A_{78} \to \neg \neg A_0)$

SOLUTIONS. (1) Note that the given formula is already in official form.

 $(\neg ((\neg A_{56}) \rightarrow A_{56}))$ is a subformula of itself.

Stripping away the outermost connective, a \neg , of the given formula, we see that $((\neg A_{56}) \rightarrow A_{56})$ is also a subformula of $(\neg ((\neg A_{56}) \rightarrow A_{56}))$.

Stripping away the outermost connective of $((\neg A_{56}) \rightarrow A_{56})$, the \rightarrow , we see that $(\neg A_{56})$ and A_{56} are subformulas of $((\neg A_{56}) \rightarrow A_{56})$, and hence of $(\neg ((\neg A_{56}) \rightarrow A_{56}))$.

Stripping away the outermost connective of $(\neg A_{56})$, the \neg , we see that A_{56} is a subformula of $(\neg A_{56})$, and hence of $(\neg ((\neg A_{56}) \rightarrow A_{56}))$.

 A_{56} , which we have reached twice in taking the given formula apart, is an atomic formula and so cannot be taken apart.

It follows that the set of subformulas of $(\neg ((\neg A_{56}) \rightarrow A_{56}))$ is:

$$\{ \left(\neg \left(\left(\neg A_{56} \right) \to A_{56} \right) \right), \left(\left(\neg A_{56} \right) \to A_{56} \right), \left(\neg A_{56} \right), A_{56} \}$$

(2) We first put $A_9 \to A_8 \to \neg (A_{78} \to \neg \neg A_0)$ into official form, using the grouping and other conventions, to get $(A_9 \to (A_8 \to (\neg (A_{78} \to (\neg (\neg A_0))))))$.

 $(A_9 \to (A_8 \to (\neg (A_{78} \to (\neg (\neg A_0)))))))$ is a subformula of itself.

Stripping away the outermost connective, $a \to 0$, of the given formula, we see that A_9 and $(A_8 \to (\neg (A_{78} \to (\neg (\neg A_0)))))$ are subformulas of the given formula.

 A_9 is an atomic formula and so cannot be taken apart.

Stripping away the outermost connective of $(A_8 \to (\neg (A_{78} \to (\neg (\neg A_0)))))$, another \to , we see that A_8 and $(\neg (A_{78} \to (\neg (\neg A_0))))$ are also subformulas of the given formula. A_8 is an atomic formula and so cannot be taken apart.

Stripping away the outermost connective of $(\neg (A_{78} \rightarrow (\neg (\neg A_0))))$, a \neg , we see that $(A_{78} \rightarrow (\neg (\neg A_0)))$ is also a subformula of the given formula.

Stripping away the outermost connective of $(A_{78} \to (\neg (\neg A_0)))$, $a \to$, we see that A_{78} and $(\neg (\neg A_0))$ are also subformulas of the given formula.

 A_{78} is an atomic formula and so cannot be taken apart.

Stripping away the outermost connective of $(\neg(\neg A_0))$, a \neg , we see that $(\neg A_0)$ is also a subformula of the given formula.

Stripping away the outermost connective of $(\neg A_0)$, another \neg , we see that A_0 is also a subformula of the given formula.

 A_0 is an atomic formula and so cannot be taken apart.

It follows that the set of subformulas of $A_9 \to A_8 \to \neg (A_{78} \to \neg \neg A_0)$ is:

$$\{ (A_9 \to (A_8 \to (\neg (A_{78} \to (\neg (\neg A_0)))))), (A_8 \to (\neg (A_{78} \to (\neg (\neg A_0))))) (\neg (A_{78} \to (\neg (\neg A_0)))), (\neg (\neg A_0)), (\neg A_0), A_{78}, A_9, A_8, A_0 \}$$

[Total = 15]

³ That is, of their official versions.