Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #9

Due on Friday, 26 March.

Do all of the following problems, all of which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **6.12.** [Problem 6.12] Show that $\forall y \ y = y$ is a tautology and that $\exists y \ \neg y = y$ is a contradiction. [2]
- **6.14.** [Problem 6.14] Show that a set of formulas Σ is satisfiable if and only if there is no contradiction χ such that $\Sigma \models \chi$. [2]
- **6.15.** [Proposition 6.15] Suppose \mathfrak{M} is a structure for \mathcal{L} and α and β are sentences of \mathcal{L} . Then:
 - (1) $\mathfrak{M} \vDash \neg \alpha$ if and only if $\mathfrak{M} \nvDash \alpha$. [2]
 - (2) $\mathfrak{M} \vDash \alpha \to \beta$ if and only if $\mathfrak{M} \vDash \alpha$ whenever $\mathfrak{M} \vDash \beta$. [2]
 - (6) $\mathfrak{M} \vDash \forall x \alpha$ if and only if $\mathfrak{M} \vDash \alpha$. [2]
- **6.10.** [Proposition 6.10] Suppose α and β are formulas of some first-order language. Then $\{(\alpha \to \beta), \alpha\} \models \beta$. [2]
 - **7.1** [Problem 7.1] (1) Is x substitutable for z in ψ if ψ is $z = x \rightarrow \forall z \, z = x$? If so, what is ψ_x^z ? [1]
 - (2) Show that if t is any term and σ is a sentence, then t is substitutable in σ for any variable x. What is σ_t^x ? [2]

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.