Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #8

Due on Friday, 19 March.

Do all of the following problems, all of which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **6.6.** [Problem 6.6] $\mathfrak{Q} = (\mathbb{Q}, <)$ is a structure for \mathcal{L}_O . For each of the following formulas φ of \mathcal{L}_O , determine whether or not $\mathfrak{Q} \models \varphi$.
 - (1) $\forall v_0 \exists v_2 v_0 < v_2 [1]$
- (3) $\forall v_4 \forall v_5 \forall v_6 (v_4 < v_5 \rightarrow (v_5 < v_6 \rightarrow v_4 < v_6))$ [1]
- **6.7.** [Lemma 6.7] Suppose \mathfrak{M} is a structure for \mathcal{L} , t is a term of \mathcal{L} , and r and s are assignments for \mathfrak{M} such that r(x) = s(x) for every variable x which occurs in t. Then $\mathbf{r}(t) = \mathbf{s}(t)$. [2]
- **6.8.** [Proposition 6.8] Suppose \mathfrak{M} is a structure for \mathcal{L} , φ is a formula of \mathcal{L} , and r and s are assignments for \mathfrak{M} such that r(x) = s(x) for every variable x which occurs free in φ . Then $\mathfrak{M} \models \varphi[r]$ if and only if $\mathfrak{M} \models \varphi[s]$. [4]
- **6.9.** [Corollary 6.9] Suppose \mathfrak{M} is a structure for \mathcal{L} and σ is a sentence of \mathcal{L} . Then $\mathfrak{M} \models \sigma$ if and only if there is some assignment $s: V \to |\mathfrak{M}|$ for \mathfrak{M} such that $\mathfrak{M} \models \sigma[s]$. [2]
- **6.10.** [Proposition 6.10] Suppose α and β are formulas of some first-order language. Then $\{(\alpha \to \beta), \alpha\} \models \beta$. [3]
- **6.11.** [Proposition 6.11] Suppose Σ is a set of formulas and ψ and ρ are formulas of some first-order language. Then $\Sigma \cup \{\psi\} \models \rho$ if and only if $\Sigma \models (\psi \to \rho)$. [2]

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.