Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #7

Due on Friday, 12 March.

Do all of the following problems, all of which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **5.13.** [Problem 5.13] Which of the languages given in Example 5.2 are extensions of other languages given in Example 5.2? [2]
- **5.14.** [Proposition 5.14] Suppose \mathcal{L} is a first-order language and \mathcal{L}' is an extension of \mathcal{L} . Then every formula of \mathcal{L} is a formula of \mathcal{L}' . [3]
- **6.1.** [Problem 6.1] The first-order languages referred to below were all defined in Example 5.2.
- (2) Determine whether $\mathfrak{Q} = (\mathbb{Q}, <)$ is a structure for each of $\mathcal{L}_{=}, \mathcal{L}_{F}, \text{ and } \mathcal{L}_{S}$. [1]
- (3) Give three different structures for \mathcal{L}_F which are not fields. [1]
- **6.2.** [Problem 6.2] $\mathfrak{N} = (\mathbb{N}, 0, S, +, \cdot, E)$ is a structure for \mathcal{L}_N . Let $s : V \to \mathbb{N}$ be the assignment defined by $s(v_k) = k+1$. What are $\mathbf{s}(E+v_{19}v_1\cdot 0v_{45})$ and $\mathbf{s}(SSS+E0v_6v_7)$? [1]
- **6.3.** [Proposition 6.3] **s** is unique, *i.e.* given an assignment s, no other function $T \to |\mathfrak{M}|$ satisfies conditions 1–3 in Definition 6.3. [3]
- **6.4.** [Problem 6.4] Let \mathfrak{N} be the structure for \mathcal{L}_N in Problem 6.2. Let $p: V \to \mathbb{N}$ be defined by $p(v_{2k}) = k$ and $p(v_{2k+1}) = k$. Verify that:
 - (1) $\mathfrak{N} \vDash \forall w (\neg Sw = 0) [p] [2]$
 - (2) $\mathfrak{N} \nvDash \forall x \exists y \, x + y = 0 \, [p] \, [2]$

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.